Mechanism of neurotransmitter release coming into focus

Research for three decades and major recent advances have provided crucial insights into how neurotransmitters are released by Ca2+‐triggered synaptic vesicle exocytosis, leading to reconstitution of basic steps that underlie Ca2+‐dependent membrane fusion and yielding a model that assigns defined functions for central components of the release machinery. The soluble N‐ethyl maleimide sensitive factor attachment protein receptors (SNAREs) syntaxin‐1, SNAP‐25, and synaptobrevin‐2 form a tight SNARE complex that brings the vesicle and plasma membranes together and is key for membrane fusion. N‐ethyl maleimide sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) disassemble the SNARE complex to recycle the SNAREs for another round of fusion. Munc18‐1 and Munc13‐1 orchestrate SNARE complex formation in an NSF‐SNAP‐resistant manner by a mechanism whereby Munc18‐1 binds to synaptobrevin and to a self‐inhibited “closed” conformation of syntaxin‐1, thus forming a template to assemble the SNARE complex, and Munc13‐1 facilitates assembly by bridging the vesicle and plasma membranes and catalyzing opening of syntaxin‐1. Synaptotagmin‐1 functions as the major Ca2+ sensor that triggers release by binding to membrane phospholipids and to the SNAREs, in a tight interplay with complexins that accelerates membrane fusion. Many of these proteins act as both inhibitors and activators of exocytosis, which is critical for the exquisite regulation of neurotransmitter release. It is still unclear how the actions of these various proteins and multiple other components that control release are integrated and, in particular, how they induce membrane fusion, but it can be expected that these fundamental questions can be answered in the near future, building on the extensive knowledge already available.

[1]  R. Jahn,et al.  Arrest of trans-SNARE zippering uncovers loosely and tightly docked intermediates in membrane fusion , 2018, The Journal of Biological Chemistry.

[2]  Christian Rosenmund,et al.  Synaptotagmin-1 drives synchronous Ca2+ triggered fusion by C2B domain-mediated synaptic vesicle-membrane attachment , 2017, Nature Neuroscience.

[3]  M. Verhage,et al.  Tyrosine phosphorylation of Munc18‐1 inhibits synaptic transmission by preventing SNARE assembly , 2017, The EMBO journal.

[4]  Y. Shin,et al.  Productive and Non-productive Pathways for Synaptotagmin 1 to Support Ca2+-Triggered Fast Exocytosis , 2017, Front. Mol. Neurosci..

[5]  A. Mayer,et al.  A tethering complex drives the terminal stage of SNARE-dependent membrane fusion , 2017, Nature.

[6]  J. Rothman,et al.  Hypothesis – buttressed rings assemble, clamp, and release SNAREpins for synaptic transmission , 2017, FEBS letters.

[7]  L. Tamm,et al.  Complexin Binding to Membranes and Acceptor t-SNAREs Explains Its Clamping Effect on Fusion. , 2017, Biophysical journal.

[8]  R. Plemel,et al.  Sec17 (α-SNAP) and an SM-tethering complex regulate the outcome of SNARE zippering in vitro and in vivo , 2017, eLife.

[9]  T. Südhof,et al.  Exceptionally tight membrane-binding may explain the key role of the synaptotagmin-7 C2A domain in asynchronous neurotransmitter release , 2017, Proceedings of the National Academy of Sciences.

[10]  J. Rizo,et al.  Reconciling isothermal titration calorimetry analyses of interactions between complexin and truncated SNARE complexes , 2017, eLife.

[11]  J. Rizo,et al.  UNC-18 and Tomosyn Antagonistically Control Synaptic Vesicle Priming Downstream of UNC-13 in Caenorhabditis elegans , 2017, The Journal of Neuroscience.

[12]  J. Rothman,et al.  Circular oligomerization is an intrinsic property of synaptotagmin , 2017, eLife.

[13]  J. Littleton,et al.  A synaptotagmin suppressor screen indicates SNARE binding controls the timing and Ca2+ cooperativity of vesicle fusion , 2017, eLife.

[14]  T. Südhof,et al.  The primed SNARE–complexin–synaptotagmin complex for neuronal exocytosis , 2017, Nature.

[15]  R. Pfuetzner,et al.  Molecular Mechanisms of Synaptic Vesicle Priming by Munc13 and Munc18 , 2017, Neuron.

[16]  W. Baumeister,et al.  Morphologies of synaptic protein membrane fusion interfaces , 2017, Proceedings of the National Academy of Sciences.

[17]  Amy S Orr,et al.  Sec17/Sec18 act twice, enhancing membrane fusion and then disassembling cis-SNARE complexes , 2017, eLife.

[18]  R. Jahn,et al.  Reconstitution of calcium-mediated exocytosis of dense-core vesicles , 2017, Science Advances.

[19]  M. Verhage,et al.  Munc13-1 and Munc18-1 together prevent NSF-dependent de-priming of synaptic vesicles , 2017, Nature Communications.

[20]  H. Weinstein,et al.  Evolutionary Divergence of the C-terminal Domain of Complexin Accounts for Functional Disparities between Vertebrate and Invertebrate Complexins , 2017, Front. Mol. Neurosci..

[21]  J. Rizo,et al.  Heterodimerization of Munc13 C2A domain with RIM regulates synaptic vesicle docking and priming , 2017, Nature Communications.

[22]  H. Urlaub,et al.  An activated Q‐SNARE/SM protein complex as a possible intermediate in SNARE assembly , 2017, The EMBO journal.

[23]  J. Rizo,et al.  Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion , 2017, eLife.

[24]  T. Südhof,et al.  Postsynaptic Synaptotagmins Mediate AMPA Receptor Exocytosis During LTP , 2017, Nature.

[25]  J. Rizo,et al.  A cascade of multiple proteins and lipids catalyzes membrane fusion , 2017, Molecular biology of the cell.

[26]  J. Rizo,et al.  Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C1C2BMUN , 2017, eLife.

[27]  J. Dittman,et al.  A C1-C2 Module in Munc13 Inhibits Calcium-Dependent Neurotransmitter Release , 2017, Neuron.

[28]  A. Brunger,et al.  Conformational change of syntaxin linker region induced by Munc13s initiates SNARE complex formation in synaptic exocytosis , 2017, The EMBO journal.

[29]  J. Malsam,et al.  Interactions Between SNAP-25 and Synaptotagmin-1 Are Involved in Vesicle Priming, Clamping Spontaneous and Stimulating Evoked Neurotransmission , 2016, The Journal of Neuroscience.

[30]  T. Südhof,et al.  C-terminal domain of mammalian complexin-1 localizes to highly curved membranes , 2016, Proceedings of the National Academy of Sciences.

[31]  P. Pinheiro,et al.  C2‐domain containing calcium sensors in neuroendocrine secretion , 2016, Journal of neurochemistry.

[32]  T. Südhof,et al.  How to Make an Active Zone: Unexpected Universal Functional Redundancy between RIMs and RIM-BPs , 2016, Neuron.

[33]  R. Pfuetzner,et al.  N-terminal domain of complexin independently activates calcium-triggered fusion , 2016, Proceedings of the National Academy of Sciences.

[34]  Y. Shin,et al.  Complexin splits the membrane-proximal region of a single SNAREpin. , 2016, The Biochemical journal.

[35]  Y. Shin,et al.  Preincubation of t-SNAREs with Complexin I Increases Content-Mixing Efficiency. , 2016, Biochemistry.

[36]  A. Brunger,et al.  Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex , 2016, eLife.

[37]  J. Rizo,et al.  Functional synergy between the Munc13 C-terminal C1 and C2 domains , 2016, eLife.

[38]  Zhiqun Xi,et al.  α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle. , 2016, Cell reports.

[39]  Q. Cui,et al.  Different states of synaptotagmin regulate evoked versus spontaneous release , 2016, Nature Communications.

[40]  D. Cafiso,et al.  Munc18-1 and the Syntaxin-1 N Terminus Regulate Open-Closed States in a t-SNARE Complex. , 2016, Structure.

[41]  Christian Rosenmund,et al.  Should I stop or should I go? The role of complexin in neurotransmitter release , 2016, Nature Reviews Neuroscience.

[42]  Ying Gao,et al.  Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis , 2015, eLife.

[43]  M. Verhage,et al.  A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells , 2015, The Journal of Neuroscience.

[44]  T. Südhof,et al.  Synaptotagmin-1 and -7 Are Redundantly Essential for Maintaining the Capacity of the Readily-Releasable Pool of Synaptic Vesicles , 2015, PLoS biology.

[45]  P. Jeffrey,et al.  A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly , 2015, Science.

[46]  Jong Bae Seo,et al.  Synaptotagmin-1 binds to PIP2-containing membrane but not to SNAREs at physiological ionic strength , 2015, Nature Structural &Molecular Biology.

[47]  D. Bruns,et al.  Complexins: small but capable , 2015, Cellular and Molecular Life Sciences.

[48]  Nicholas K. Sauter,et al.  Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis , 2015, Nature.

[49]  Junjie Xu,et al.  The Synaptic Vesicle Release Machinery. , 2015, Annual review of biophysics.

[50]  J. Rizo,et al.  Syntaxin opening by the MUN domain underlies the function of Munc13 in synaptic-vesicle priming , 2015, Nature Structural &Molecular Biology.

[51]  T. Martin PI(4,5)P₂-binding effector proteins for vesicle exocytosis. , 2015, Biochimica et biophysica acta.

[52]  T. Südhof,et al.  Dynamic Binding Mode of a Synaptotagmin-1-SNARE Complex in Solution , 2015, Nature Structural &Molecular Biology.

[53]  Amy S Orr,et al.  Sec17 can trigger fusion of trans-SNARE paired membranes without Sec18 , 2015, Proceedings of the National Academy of Sciences.

[54]  J. Rothman,et al.  Re-visiting the trans insertion model for complexin clamping , 2015, eLife.

[55]  A. Brunger,et al.  Towards reconstitution of membrane fusion mediated by SNAREs and other synaptic proteins , 2015, Critical reviews in biochemistry and molecular biology.

[56]  A. Cans,et al.  Amperometric detection of single vesicle acetylcholine release events from an artificial cell. , 2015, ACS chemical neuroscience.

[57]  Yifan Cheng,et al.  Mechanistic insights into the recycling machine of the SNARE complex , 2014, Nature.

[58]  T. Südhof The molecular machinery of neurotransmitter release (Nobel lecture). , 2014, Angewandte Chemie.

[59]  J. Dittman,et al.  The accessory helix of complexin functions by stabilizing central helix secondary structure , 2014, eLife.

[60]  T. Südhof,et al.  The Morphological and Molecular Nature of Synaptic Vesicle Priming at Presynaptic Active Zones , 2014, Neuron.

[61]  W. Wickner,et al.  A distinct tethering step is vital for vacuole membrane fusion , 2014, eLife.

[62]  J. Dittman,et al.  Membrane curvature sensing by the C-terminal domain of complexin , 2014, Nature Communications.

[63]  J. Rothman,et al.  Calcium sensitive ring-like oligomers formed by synaptotagmin , 2014, Proceedings of the National Academy of Sciences.

[64]  J. Rothman,et al.  Genetic analysis of the Complexin trans-clamping model for cross-linking SNARE complexes in vivo , 2014, Proceedings of the National Academy of Sciences.

[65]  J. Rizo,et al.  Re-examining how complexin inhibits neurotransmitter release , 2014, eLife.

[66]  R. Jahn,et al.  α-SNAP Interferes with the Zippering of the SNARE Protein Membrane Fusion Machinery , 2014, The Journal of Biological Chemistry.

[67]  Y. Shin,et al.  Multiple conformations of a single SNAREpin between two nanodisc membranes reveal diverse pre-fusion states. , 2014, The Biochemical journal.

[68]  M. Mayer,et al.  An Extended Helical Conformation in Domain 3a of Munc18-1 Provides a Template for SNARE (Soluble N-Ethylmaleimide-sensitive Factor Attachment Protein Receptor) Complex Assembly* , 2014, The Journal of Biological Chemistry.

[69]  T. Südhof,et al.  Deconstructing complexin function in activating and clamping Ca2+-triggered exocytosis by comparing knockout and knockdown phenotypes , 2013, Proceedings of the National Academy of Sciences.

[70]  Thomas C. Südhof,et al.  Synaptotagmin-1 and Synaptotagmin-7 Trigger Synchronous and Asynchronous Phases of Neurotransmitter Release , 2013, Neuron.

[71]  T. Südhof,et al.  Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle , 2013, Neuron.

[72]  T. Südhof,et al.  Lipid-Anchored SNAREs Lacking Transmembrane Regions Fully Support Membrane Fusion during Neurotransmitter Release , 2013, Neuron.

[73]  R. Pfuetzner,et al.  Complexin-1 Enhances the On-Rate of Vesicle Docking via Simultaneous SNARE and Membrane Interactions , 2013, Journal of the American Chemical Society.

[74]  J. Rizo,et al.  Subtle Interplay between synaptotagmin and complexin binding to the SNARE complex. , 2013, Journal of molecular biology.

[75]  J. Rizo,et al.  Prevalent mechanism of membrane bridging by synaptotagmin-1 , 2013, Proceedings of the National Academy of Sciences.

[76]  J. Rizo,et al.  Analysis of SNARE complex/synaptotagmin-1 interactions by one-dimensional NMR spectroscopy. , 2013, Biochemistry.

[77]  Changbong Hyeon,et al.  Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism , 2013, Nature Communications.

[78]  J. Rizo,et al.  Reconstitution of the Vital Functions of Munc18 and Munc13 in Neurotransmitter Release , 2013, Science.

[79]  J. Dittman,et al.  Synaptic Vesicles Position Complexin to Block Spontaneous Fusion , 2013, Neuron.

[80]  Patricia Grob,et al.  Synaptic proteins promote calcium-triggered fast transition from point contact to full fusion , 2012, eLife.

[81]  T. Südhof,et al.  Syntaxin‐1 N‐peptide and Habc‐domain perform distinct essential functions in synaptic vesicle fusion , 2012, The EMBO journal.

[82]  T. Südhof,et al.  The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? , 2012, Annual review of cell and developmental biology.

[83]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[84]  Gregory W. Gundersen,et al.  Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct Stages , 2012, Science.

[85]  J. Rizo Staging Membrane Fusion , 2012, Science.

[86]  G. van den Bogaart,et al.  Controlling synaptotagmin activity by electrostatic screening , 2012, Nature Structural &Molecular Biology.

[87]  J. Briggs,et al.  Complexin arrests a pool of docked vesicles for fast Ca2+‐dependent release , 2012, The EMBO journal.

[88]  T. Südhof The Presynaptic Active Zone , 2012, Neuron.

[89]  W. Regehr Short-term presynaptic plasticity. , 2012, Cold Spring Harbor perspectives in biology.

[90]  R. Jahn,et al.  Membrane Fusion Intermediates via Directional and Full Assembly of the SNARE Complex , 2012, Science.

[91]  M. Verhage,et al.  Munc18‐1 mutations that strongly impair SNARE‐complex binding support normal synaptic transmission , 2012, The EMBO journal.

[92]  Nam Ki Lee,et al.  Solution single‐vesicle assay reveals PIP2‐mediated sequential actions of synaptotagmin‐1 on SNAREs , 2012, The EMBO journal.

[93]  T. Südhof,et al.  C-Terminal Complexin Sequence Is Selectively Required for Clamping and Priming But Not for Ca2+ Triggering of Synaptic Exocytosis , 2012, The Journal of Neuroscience.

[94]  R B Sutton,et al.  Calcium Binding by Synaptotagmin's C2A Domain is an Essential Element of the Electrostatic Switch That Triggers Synchronous Synaptic Transmission , 2012, The Journal of Neuroscience.

[95]  W. Wickner,et al.  A lipid-anchored SNARE supports membrane fusion , 2011, Proceedings of the National Academy of Sciences.

[96]  N. Calakos,et al.  Munc13-1 Is Required for Presynaptic Long-Term Potentiation , 2011, The Journal of Neuroscience.

[97]  Reinhard Jahn,et al.  Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses , 2011, Proceedings of the National Academy of Sciences.

[98]  J. Rothman,et al.  Complexin cross-links prefusion SNAREs into a zigzag array. , 2011, Nature structural & molecular biology.

[99]  J. Rothman,et al.  Complexin activates and clamps SNAREpins by a common mechanism involving an intermediate energetic state , 2011, Nature Structural &Molecular Biology.

[100]  J. Rothman,et al.  A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion , 2011, Nature Structural &Molecular Biology.

[101]  J. Rizo,et al.  Membrane Bridging and Hemifusion by Denaturated Munc18 , 2011, PloS one.

[102]  Patricia Grob,et al.  In vitro system capable of differentiating fast Ca2+-triggered content mixing from lipid exchange for mechanistic studies of neurotransmitter release , 2011, Proceedings of the National Academy of Sciences.

[103]  E. Chapman,et al.  Mechanism and function of synaptotagmin-mediated membrane apposition , 2011, Nature Structural &Molecular Biology.

[104]  H. Grubmüller,et al.  Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation , 2011, Nature Structural &Molecular Biology.

[105]  Wei Li,et al.  Munc13 Mediates the Transition from the Closed Syntaxin–Munc18 complex to the SNARE complex , 2011, Nature Structural &Molecular Biology.

[106]  Thomas C. Südhof,et al.  RIM Proteins Activate Vesicle Priming by Reversing Autoinhibitory Homodimerization of Munc13 , 2011, Neuron.

[107]  Shigeki Watanabe,et al.  Complexin Maintains Vesicles in the Primed State in C. elegans , 2011, Current Biology.

[108]  J. Dittman,et al.  Complexin Has Opposite Effects on Two Modes of Synaptic Vesicle Fusion , 2011, Current Biology.

[109]  Thomas C. Südhof,et al.  RIM Proteins Tether Ca2+ Channels to Presynaptic Active Zones via a Direct PDZ-Domain Interaction , 2011, Cell.

[110]  A. Lai,et al.  Synaptotagmin 1 and SNAREs form a complex that is structurally heterogeneous. , 2011, Journal of molecular biology.

[111]  Jennifer L. Martin,et al.  Possible roles for Munc18-1 domain 3a and Syntaxin1 N-peptide and C-terminal anchor in SNARE complex formation , 2010, Proceedings of the National Academy of Sciences.

[112]  T. Südhof,et al.  Complexin Clamps Asynchronous Release by Blocking a Secondary Ca2+ Sensor via Its Accessory α Helix , 2010, Neuron.

[113]  E. Jorgensen,et al.  Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the SNARE–Sec1/Munc18 membrane fusion complex , 2010, Proceedings of the National Academy of Sciences.

[114]  E. Neher,et al.  Fast Vesicle Fusion in Living Cells Requires at Least Three SNARE Complexes , 2010, Science.

[115]  J. Rizo,et al.  At the junction of SNARE and SM protein function. , 2010, Current opinion in cell biology.

[116]  J. Yates,et al.  HOPS prevents the disassembly of trans‐SNARE complexes by Sec17p/Sec18p during membrane fusion , 2010, The EMBO journal.

[117]  Changbong Hyeon,et al.  Dynamic Ca2+-Dependent Stimulation of Vesicle Fusion by Membrane-Anchored Synaptotagmin 1 , 2010, Science.

[118]  J. Rizo,et al.  Binding of the complexin N terminus to the SNARE complex potentiates synaptic-vesicle fusogenicity , 2010, Nature Structural &Molecular Biology.

[119]  Josep Rizo,et al.  Binding of Munc18-1 to synaptobrevin and to the SNARE four-helix bundle. , 2010, Biochemistry.

[120]  Axel T. Brunger,et al.  Single-molecule FRET-derived model of the synaptotagmin 1–SNARE fusion complex , 2010, Nature Structural &Molecular Biology.

[121]  T. Südhof,et al.  Munc13 C2B-Domain – an Activity-Dependent Ca2+-Regulator of Synaptic Exocytosis , 2010, Nature Structural &Molecular Biology.

[122]  F. Wouters,et al.  One SNARE complex is sufficient for membrane fusion , 2010, Nature Structural &Molecular Biology.

[123]  Christian Griesinger,et al.  Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca2+ and possible function in short‐term synaptic plasticity , 2010, The EMBO journal.

[124]  V. Lučić,et al.  Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography , 2010, The Journal of cell biology.

[125]  Nancy T. Malintan,et al.  Rescue of Munc18-1 and -2 double knockdown reveals the essential functions of interaction between Munc18 and closed syntaxin in PC12 cells. , 2009, Molecular biology of the cell.

[126]  Hugo J. Bellen,et al.  Tilting the Balance between Facilitatory and Inhibitory Functions of Mammalian and Drosophila Complexins Orchestrates Synaptic Vesicle Exocytosis , 2009, Neuron.

[127]  T. Südhof,et al.  Differential but convergent functions of Ca2+ binding to synaptotagmin-1 C2 domains mediate neurotransmitter release , 2009, Proceedings of the National Academy of Sciences.

[128]  D. Fasshauer,et al.  A Conserved Membrane Attachment Site in α-SNAP Facilitates N-Ethylmaleimide-sensitive Factor (NSF)-driven SNARE Complex Disassembly* , 2009, The Journal of Biological Chemistry.

[129]  Dietmar Riedel,et al.  Synaptotagmin-1 Docks Secretory Vesicles to Syntaxin-1/SNAP-25 Acceptor Complexes , 2009, Cell.

[130]  N. Grishin,et al.  Remote homology between Munc13 MUN domain and vesicle tethering complexes. , 2009, Journal of molecular biology.

[131]  J. Malsam,et al.  A role of complexin–lipid interactions in membrane fusion , 2009, FEBS letters.

[132]  Reinhard Jahn,et al.  Helical extension of the neuronal SNARE complex into the membrane , 2009, Nature.

[133]  A. Merz,et al.  Capture and release of partially zipped trans-SNARE complexes on intact organelles , 2009, The Journal of cell biology.

[134]  Zhiping P. Pang,et al.  Synaptotagmin-1 functions as the Ca2+-sensor for spontaneous release , 2009, Nature Neuroscience.

[135]  T. Südhof,et al.  Munc18-1 binding to the neuronal SNARE complex controls synaptic vesicle priming , 2009, The Journal of cell biology.

[136]  S. Boxer,et al.  Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides , 2009, Proceedings of the National Academy of Sciences.

[137]  T. Südhof,et al.  Membrane Fusion: Grappling with SNARE and SM Proteins , 2009, Science.

[138]  T. Südhof,et al.  Complexin Controls the Force Transfer from SNARE Complexes to Membranes in Fusion , 2009, Science.

[139]  J. Rothman,et al.  Alternative Zippering as an On-Off Switch for SNARE-Mediated Fusion , 2009, Science.

[140]  E. Chapman,et al.  Synaptotagmin C2B Domain Regulates Ca2+-triggered Fusion in Vitro , 2008, Journal of Biological Chemistry.

[141]  J. Rizo,et al.  The Janus-Faced Nature of the C2B Domain Is Fundamental for Synaptotagmin-1 Function , 2008, Nature Structural &Molecular Biology.

[142]  Christian Rosenmund,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to 12 Tables S1 and S2 References and Notes Conformational Switch of Syntaxin-1 Controls Synaptic Vesicle Fusion , 2022 .

[143]  Christopher M Hickey,et al.  Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones , 2008, The EMBO journal.

[144]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[145]  T. Ha,et al.  Complexin and Ca2+ stimulate SNARE-mediated membrane fusion , 2008, Nature Structural &Molecular Biology.

[146]  Christian Rosenmund,et al.  Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system , 2008, Proceedings of the National Academy of Sciences.

[147]  Edwin R Chapman,et al.  How does synaptotagmin trigger neurotransmitter release? , 2008, Annual review of biochemistry.

[148]  I. Dulubova,et al.  NMR analysis of the closed conformation of syntaxin-1 , 2008, Journal of biomolecular NMR.

[149]  Dirk Fasshauer,et al.  Munc18a controls SNARE assembly through its interaction with the syntaxin N‐peptide , 2008, The EMBO journal.

[150]  A. Brunger,et al.  Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. , 2008, Structure.

[151]  J. Rizo,et al.  Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. , 2008, Biochemistry.

[152]  Nils Brose,et al.  CAPS-1 and CAPS-2 Are Essential Synaptic Vesicle Priming Proteins , 2007, Cell.

[153]  Josep Rizo,et al.  Dual Modes of Munc18-1/SNARE Interactions Are Coupled by Functionally Critical Binding to Syntaxin-1 N Terminus , 2007, The Journal of Neuroscience.

[154]  J. Littleton,et al.  A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth , 2007, Nature Neuroscience.

[155]  Nils Brose,et al.  Distinct domains of Complexin I differentially regulate neurotransmitter release , 2007, Nature Structural &Molecular Biology.

[156]  Shigeki Watanabe,et al.  Open Syntaxin Docks Synaptic Vesicles , 2007, PLoS biology.

[157]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[158]  J. Rizo,et al.  A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. , 2007, Journal of molecular biology.

[159]  T. Südhof,et al.  Munc18-1 binds directly to the neuronal SNARE complex , 2007, Proceedings of the National Academy of Sciences.

[160]  Christian Rosenmund,et al.  Munc13-1 C1 Domain Activation Lowers the Energy Barrier for Synaptic Vesicle Fusion , 2007, The Journal of Neuroscience.

[161]  J. Rothman,et al.  Selective Activation of Cognate SNAREpins by Sec1/Munc18 Proteins , 2007, Cell.

[162]  Thomas C. Südhof,et al.  A Complexin/Synaptotagmin 1 Switch Controls Fast Synaptic Vesicle Exocytosis , 2006, Cell.

[163]  Peter Novick,et al.  Rabs and their effectors: Achieving specificity in membrane traffic , 2006, Proceedings of the National Academy of Sciences.

[164]  J. Rothman,et al.  A Clamping Mechanism Involved in SNARE-Dependent Exocytosis , 2006, Science.

[165]  Y. Shin,et al.  Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I , 2006, Nature Structural &Molecular Biology.

[166]  Demet Araç,et al.  Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. , 2006, Trends in cell biology.

[167]  T. Südhof,et al.  Structural Determinants of Synaptobrevin 2 Function in Synaptic Vesicle Fusion , 2006, The Journal of Neuroscience.

[168]  T. Südhof,et al.  Phosphatidylinositol Phosphates as Co-activators of Ca2+ Binding to C2 Domains of Synaptotagmin 1* , 2006, Journal of Biological Chemistry.

[169]  T. Südhof,et al.  Structural Basis for a Munc13–1 Homodimer to Munc13–1/RIM Heterodimer Switch , 2006, PLoS biology.

[170]  B. L. de Groot,et al.  Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. , 2006, The EMBO journal.

[171]  T. Südhof,et al.  Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids , 2006, Nature Structural &Molecular Biology.

[172]  T. Südhof,et al.  Rab3 Superprimes Synaptic Vesicles for Release: Implications for Short-Term Synaptic Plasticity , 2006, The Journal of Neuroscience.

[173]  T. Südhof,et al.  Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[174]  Colin Rickman,et al.  Conserved prefusion protein assembly in regulated exocytosis. , 2005, Molecular biology of the cell.

[175]  N. Grishin,et al.  A minimal domain responsible for Munc13 activity , 2005, Nature Structural &Molecular Biology.

[176]  Ralf Schneggenburger,et al.  A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? , 2005, The EMBO journal.

[177]  Josep Rizo,et al.  Intramolecular occlusion of the diacylglycerol-binding site in the C1 domain of munc13-1. , 2005, Biochemistry.

[178]  G. Augustine,et al.  Dual Roles of the C2B Domain of Synaptotagmin I in Synchronizing Ca2+-Dependent Neurotransmitter Release , 2004, The Journal of Neuroscience.

[179]  Christian Rosenmund,et al.  Calmodulin and Munc13 Form a Ca2+ Sensor/Effector Complex that Controls Short-Term Synaptic Plasticity , 2004, Cell.

[180]  T. Südhof The synaptic vesicle cycle , 2004 .

[181]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[182]  Y. Shin,et al.  Membrane topologies of neuronal SNARE folding intermediates. , 2002, Biochemistry.

[183]  Jodi Gureasko,et al.  Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I , 2002, The Journal of cell biology.

[184]  I. Robinson,et al.  The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo , 2002, Nature.

[185]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[186]  T. Südhof Synaptotagmins: Why So Many?* , 2002, The Journal of Biological Chemistry.

[187]  T. Südhof,et al.  Three-Dimensional Structure of the Complexin/SNARE Complex , 2002, Neuron.

[188]  Thomas C. Südhof,et al.  RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone , 2002, Nature.

[189]  Thomas C. Südhof,et al.  RIM1α is required for presynaptic long-term potentiation , 2002, Nature.

[190]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[191]  T. Südhof,et al.  Three-Dimensional Structure of the Synaptotagmin 1 C2B-Domain Synaptotagmin 1 as a Phospholipid Binding Machine , 2001, Neuron.

[192]  Erik M. Jorgensen,et al.  A post-docking role for active zone protein Rim , 2001, Nature Neuroscience.

[193]  E. Jorgensen,et al.  An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming , 2001, Nature.

[194]  W. Xiao,et al.  The neuronal t-SNARE complex is a parallel four-helix bundle , 2001, Nature Structural Biology.

[195]  Nils Brose,et al.  Functional Interaction of the Active Zone Proteins Munc13-1 and RIM1 in Synaptic Vesicle Priming , 2001, Neuron.

[196]  T. Südhof,et al.  Vam3p structure reveals conserved and divergent properties of syntaxins , 2001, Nature Structural Biology.

[197]  T. Südhof,et al.  Synaptotagmin I functions as a calcium regulator of release probability , 2001, Nature.

[198]  Thomas C. Südhof,et al.  Complexins Regulate a Late Step in Ca2+-Dependent Neurotransmitter Release , 2001, Cell.

[199]  T. Südhof,et al.  Selective Interaction of Complexin with the Neuronal SNARE Complex , 2000, The Journal of Biological Chemistry.

[200]  J. Rothman,et al.  Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP , 2000, The Journal of cell biology.

[201]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[202]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[203]  Kendal Broadie,et al.  Drosophila Unc-13 is essential for synaptic transmission , 1999, Nature Neuroscience.

[204]  E. Jorgensen,et al.  UNC-13 is required for synaptic vesicle fusion in C. elegans , 1999, Nature Neuroscience.

[205]  J. Rothman,et al.  Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[206]  T. Südhof,et al.  A conformational switch in syntaxin during exocytosis: role of munc18 , 1999, The EMBO journal.

[207]  L. Rice,et al.  Crystal structure of the vesicular transport protein Sec17: implications for SNAP function in SNARE complex disassembly. , 1999, Molecular cell.

[208]  K. Misura,et al.  Crystal structure of the amino-terminal domain of N-ethylmaleimide-sensitive fusion protein , 1999, Nature Cell Biology.

[209]  T. Südhof,et al.  Structure of the Janus-faced C2B domain of rabphilin , 1999, Nature Cell Biology.

[210]  A. Brunger,et al.  Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[211]  T. Südhof,et al.  Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? , 1998, Biochemistry.

[212]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[213]  Josep Ubach,et al.  Three-Dimensional Structure of an Evolutionarily Conserved N-Terminal Domain of Syntaxin 1A , 1998, Cell.

[214]  A. Brünger,et al.  Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP , 1998, Nature Structural Biology.

[215]  W. Xiao,et al.  The synaptic SNARE complex is a parallel four-stranded helical bundle , 1998, Nature Structural Biology.

[216]  T. Südhof,et al.  Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. , 1998, Biochemistry.

[217]  T. Südhof,et al.  Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2‐domain? , 1998, The EMBO journal.

[218]  T. Südhof,et al.  C2-domains, Structure and Function of a Universal Ca2+-binding Domain* , 1998, The Journal of Biological Chemistry.

[219]  W. Wickner,et al.  Vam7p, a vacuolar SNAP‐25 homolog, is required for SNARE complex integrity and vacuole docking and fusion , 1998, The EMBO journal.

[220]  E. Chapman,et al.  Direct Interaction of a Ca2+-binding Loop of Synaptotagmin with Lipid Bilayers* , 1998, The Journal of Biological Chemistry.

[221]  Benedikt Westermann,et al.  SNAREpins: Minimal Machinery for Membrane Fusion , 1998, Cell.

[222]  Reinhard Jahn,et al.  Structure and Conformational Changes in NSF and Its Membrane Receptor Complexes Visualized by Quick-Freeze/Deep-Etch Electron Microscopy , 1997, Cell.

[223]  Robert C. Malenka,et al.  Rab3A is essential for mossy fibre long-term potentiation in the hippocampus , 1997, Nature.

[224]  Thomas C. Südhof,et al.  Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion , 1997, Nature.

[225]  P. Hanson,et al.  Neurotransmitter release — four years of SNARE complexes , 1997, Current Opinion in Neurobiology.

[226]  T. Südhof,et al.  Synaptotagmin–Syntaxin Interaction: The C2 Domain as a Ca2+-Dependent Electrostatic Switch , 1997, Neuron.

[227]  N. Brose,et al.  Direct Interaction of the Rat unc-13 Homologue Munc13-1 with the N Terminus of Syntaxin* , 1997, The Journal of Biological Chemistry.

[228]  B. Dasgupta,et al.  N-Ethylmaleimide-sensitive Factor Acts at a Prefusion ATP-dependent Step in Ca2+-activated Exocytosis* , 1996, The Journal of Biological Chemistry.

[229]  A. Mayer,et al.  Sec18p (NSF)-Driven Release of Sec17p (α-SNAP) Can Precede Docking and Fusion of Yeast Vacuoles , 1996, Cell.

[230]  A. Bernstein,et al.  Each Domain of the N-Ethylmaleimide-sensitive Fusion Protein Contributes to Its Transport Activity (*) , 1995, The Journal of Biological Chemistry.

[231]  Thomas C. Südhof,et al.  Complexins: Cytosolic proteins that regulate SNAP receptor function , 1995, Cell.

[232]  S. Nauenburg,et al.  Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro. , 1995, The EMBO journal.

[233]  S. Sprang,et al.  Structure of the first C2 domain of synaptotagmin I: A novel Ca2+/phospholipid-binding fold , 1995, Cell.

[234]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[235]  J. Rothman,et al.  N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion , 1994, The Journal of cell biology.

[236]  Mark K. Bennett,et al.  A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion , 1993, Cell.

[237]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[238]  K. Hirose,et al.  Synaptic weight set by Munc13-1 supramolecular assemblies , 2017, Nature Neuroscience.

[239]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[240]  E. Chapman,et al.  PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane , 2004, Nature Structural &Molecular Biology.