Asynchronous spiking photonic neuron for lightwave neuromorphic signal processing.

We developed an asynchronous spiking photonic neuron that forms the basic building block for hybrid analog/digital lightwave neuromorphic processing. Our approach enables completely asynchronous spiking in response to input signals while maximizing the throughput relative to synchronous approaches. Asynchronous operation is achieved by generating the spike source for the photonic neuron through four-wave mixing. This hybrid analog/digital photonic neuron has an electro-absorption modulator as the temporal integration unit for analog processing, while the digital processing portion employs optical thresholding in a highly Ge-doped nonlinear loop mirror.