6- N,N -Dimethylamino-2,3-Naphthalimide a New Environment-Sensitive Fluorescent Probe in δ -Selective and μ -Selective Opioid Peptides

A new environment-sensitive fluorophore, 6- N , N -dimethylamino-2,3-naphthalimide (6DMN) was introduced in the δ -selective opioid agonist H-Dmt-Tic-Glu-NH 2 and in the μ -selective opioid agonist endomorphin-2 (H-Tyr-Pro-Phe-Phe-NH 2 ). Environment sensitive fluorophores are a special class of chromophores that generally exhibit a low quantum yield in aqueous solution, but become highly fluorescent in nonpolar solvents or when bound to hydrophobic sites in proteins or membranes. New fluorescent δ -selective irreversible antagonists [H-Dmt-Tic-Glu-NH-(CH 2 ) 5 -CO-Dap(6DMN)-NH 2 (1) and H-Dmt-Tic-Glu-Dap(6DMN)-NH 2 )] (2) were identified as potential fluorescent probes showing properties suitable for studies of distribution and internalization of δ -opioid receptors by confocal laser scanning microscopy.

[1]  B. Imperiali,et al.  Photophysics and biological applications of the environment-sensitive fluorophore 6-N,N-dimethylamino-2,3-naphthalimide. , 2005, Journal of the American Chemical Society.

[2]  J. Vanderkooi,et al.  [Aladan3]TIPP: A fluorescent δ‐opioid antagonist with high δ‐receptor binding affinity and δ selectivity , 2005, Biopolymers.

[3]  S. Salvadori,et al.  Highly selective fluorescent analogue of the potent delta-opioid receptor antagonist Dmt-Tic. , 2004, Journal of medicinal chemistry.

[4]  B. Imperiali,et al.  A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. , 2004, Organic & biomolecular chemistry.

[5]  S. Salvadori,et al.  Direct influence of C-terminally substituted amino acids in the Dmt-Tic pharmacophore on delta-opioid receptor selectivity and antagonism. , 2004, Journal of medicinal chemistry.

[6]  D. Lawrence,et al.  Biosensors of protein kinase action: from in vitro assays to living cells. , 2004, Biochimica et biophysica acta.

[7]  A. Samanta,et al.  4-Aminophthalimide Derivatives as Environment-Sensitive Probes , 1998, Journal of Fluorescence.

[8]  Zijian Guo,et al.  Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors , 2004 .

[9]  P. Schiller,et al.  Dansylated analogues of the opioid peptide [Dmt1]DALDA: in vitro activity profiles and fluorescence parameters. , 2004, Acta biochimica Polonica.

[10]  S. Salvadori,et al.  Synthesis and opioid activity of N,N-dimethyl-Dmt-Tic-NH-CH(R)-R' analogues: acquisition of potent delta antagonism. , 2003, Bioorganic & medicinal chemistry.

[11]  H. Szeto,et al.  Highly potent fluorescent analogues of the opioid peptide [Dmt1]DALDA , 2003, Peptides.

[12]  M. Yaffe,et al.  Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations. , 2003, Journal of the American Chemical Society.

[13]  J. Chovelon,et al.  A copolymer of 4-N,N-dimethylaminoethylene-N-allyl-1,8-naphthalimide with methylmethacrylate as a selective fluorescent chemosensor in homogeneous systems for metal cations , 2003 .

[14]  J. Lippincott-Schwartz,et al.  Development and Use of Fluorescent Protein Markers in Living Cells , 2003, Science.

[15]  David M Jameson,et al.  Fluorescence: basic concepts, practical aspects, and some anecdotes. , 2003, Methods in enzymology.

[16]  Roger Y. Tsien,et al.  Creating new fluorescent probes for cell biology , 2003, Nature Reviews Molecular Cell Biology.

[17]  S. Salvadori,et al.  Potent δ-Opioid Receptor Agonists Containing the Dmt−Tic Pharmacophore , 2002 .

[18]  Y. Jan,et al.  Probing Protein Electrostatics with a Synthetic Fluorescent Amino Acid , 2002, Science.

[19]  P. Leopold,et al.  Sample preparation of Gram-positive bacteria for identification by matrix assisted laser desorption/ionization time-of-flight. , 2002, Journal of microbiological methods.

[20]  B. Valeur,et al.  Molecular Fluorescence: Principles and Applications , 2001 .

[21]  A. Guglietta,et al.  Dermorphin Gene Sequence Peptide with High Affinity and Selectivity for &Opioid Receptors* , 2001 .

[22]  T. F. Murray,et al.  Extended TIP(P) Analogues as Precursors for Labeled δ-Opioid Receptor Ligands , 2000 .

[23]  D. Grandy,et al.  Binding and internalization of fluorescent opioid peptide conjugates in living cells. , 2000, Molecular pharmacology.

[24]  S. Salvadori,et al.  Further Studies on the Dmt-Tic Pharmacophore: Hydrophobic Substituents at the C-Terminus Endow δ Antagonists To Manifest μ Agonism or μ Antagonism , 1999 .

[25]  P. Law,et al.  NTI4F: a non-peptide fluorescent probe selective for functional delta opioid receptors , 1998, Neuroscience Letters.

[26]  A. Kastin,et al.  A potent and selective endogenous agonist for the mu-opiate receptor. , 1997, Nature.

[27]  P. Portoghese,et al.  Arylacetamide-derived fluorescent probes: synthesis, biological evaluation, and direct fluorescent labeling of kappa opioid receptors in mouse microglial cells. , 1996, Journal of Medicinal Chemistry.

[28]  W. E. Wilson,et al.  Function of negative charge in the "address domain" of deltorphins. , 1991, Journal of medicinal chemistry.

[29]  L. Negri Structure-activity relationships of the d- opioid selective agonists, deltorphins , 1990 .

[30]  S. Salvadori,et al.  Opioid peptides. Synthesis and biological properties of dermorphin related hexapeptides , 1990 .

[31]  A. Goldstein,et al.  "DAKLI": a multipurpose ligand with high affinity and selectivity for dynorphin (kappa opioid) binding sites. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Mihara,et al.  δ and μ opiate receptor probes: fluorescent enkephalins with high receptor affinity and specificity , 1985 .

[33]  David Phillips,et al.  Photophysics of some common fluorescence standards , 1983 .

[34]  G. Weber,et al.  Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. , 1979, Biochemistry.

[35]  P. Cuatrecasas,et al.  Fluorescent and photo-affinity enkephalin derivatives: preparation and interaction with opiate receptors. , 1979, Biochemical and biophysical research communications.

[36]  W. Hancock,et al.  A new micro-test for the detection of incomplete coupling reactions in solid-phase peptide synthesis using 2,4,6-trinitrobenzenesulphonic acid. , 1976, Analytical biochemistry.

[37]  A. Watt,et al.  Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). , 1968, British journal of pharmacology and chemotherapy.