Probabilistic approach for modelling the load-bearing capacity of glued laminated timber

Abstract In this paper, a probabilistic approach for modelling the load-bearing capacity of glued laminated timber is presented. The specific characteristic of this approach is that, at first, timber boards are simulated according the natural growth characteristic of timber. Subsequent, glued laminated timber beams are virtually composed out of the simulated timber boards. Thereby, every kind of fabrication procedure, such as the length of the timber boards or the beam dimensions, can be recreated. Afterwards, a numerical model is used to estimate the load-bearing capacity, the bending stiffness and the type of failure of the simulated GLT beams. To ensure the quality of the numerical model it is validated with 24 GLT beams with a precisely-known beam setup; a wide agreement between the measured and the estimated material properties is identified. For a probabilistic investigation of different input parameters a Monte Carlo simulation is performed. The application of the presented approach is illustrated on selected examples (size effect, the quality of finger joint connections and grading criteria).

[1]  Erik Serrano,et al.  Numerical investigations of the laminating effect in laminated beams , 1999 .

[2]  R. Brandner,et al.  Glued laminated timber in bending: new aspects concerning modelling , 2008, Wood Science and Technology.

[3]  Robert H. Falk,et al.  Laminating Effects in Glued-Laminated Timber Beams , 1995 .

[4]  Simulation method to generate the strength of glulam using correlated random variables , 2011, Journal of Wood Science.

[5]  B. Heimeshoff,et al.  Zugfestigkeit und Biege-E-Modul von Fichten-Brettlamellen , 1980, Holz als Roh- und Werkstoff.

[6]  R. Hernandez,et al.  Probabilistic Modeling of Glued-Laminated Timber Beams , 2007 .

[7]  Gerhard Fink,et al.  Probabilistic modelling of the tensile related material properties of timber boards and finger joint connections , 2015, European Journal of Wood and Wood Products.

[8]  Tord Isaksson,et al.  Modelling the Variability of Bending Strength in Structural Timber - Length and Load Configuration Effects , 1999 .

[9]  Andrea Frangi,et al.  Bending tests on GLT beams having well-known local material properties , 2015 .

[10]  Jochen Köhler,et al.  Reliability of Timber Structures , 2007 .

[11]  Gerhard Fink,et al.  Model for the prediction of the tensile strength and tensile stiffness of knot clusters within structural timber , 2014, European Journal of Wood and Wood Products.

[12]  François Colling,et al.  Einfluß keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern , 1985, Holz als Roh- und Werkstoff.

[13]  M. Frese,et al.  Bending strength of spruce glulam , 2009, European Journal of Wood and Wood Products.

[14]  Robert H. Falk,et al.  STRENGTH OF GLULAM BEAMS-VOLUME EFFECTS , 1990 .

[15]  Matthias Frese,et al.  Verifikation von Festigkeitsmodellen für die Brettschichtholz-Biegefestigkeit , 2010, European Journal of Wood and Wood Products.

[16]  Andrea Frangi,et al.  Bending tests on glued laminated timber beams with well-known material properties , 2013 .

[17]  F. Colling,et al.  Die Ästigkeit des in den Leimbaubetrieben verwendeten Schmittholzes , 2007, Holz als Roh- und Werkstoff.

[18]  Andrea Frangi,et al.  Modelling the bending strength of glued laminated timber - considering the natural growth characteristics of timber , 2013 .

[19]  Ricardo O. Foschi,et al.  Glued-Laminated Beam Strength: A Model , 1980 .

[20]  Gerhard Fink,et al.  Influence of varying material properties on the load-bearing capacity of glued laminated timber , 2014 .

[21]  J. Ehlbeck,et al.  Einfluß keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern , 1985, Holz als Roh- und Werkstoff.