An Adaptive E-commerce Personalization Framework with Application in E-banking

Internet Personalized services are irresistible developing trend for e-commerce. More and more researchers are committed to personalization field. Many personalization approaches are static and lack of means to improve the personalized tasks. This paper proposes an adaptive e-commerce personalization framework using traditional data mining techniques and agent technology as well as user feedback optimisation mechanism to improve the personalized services to the e-commerce customer. The behaviours of all the agents in the framework are carefully considered and the framework has been applied to an online banking system.

[1]  Yasue Mitsukura,et al.  Multi-Agent Architecture for Automatic Recommendation System in E-Commerce , 2003, ICEIS.

[2]  Cyrus Shahabi,et al.  Knowledge discovery from users Web-page navigation , 1997, Proceedings Seventh International Workshop on Research Issues in Data Engineering. High Performance Database Management for Large-Scale Applications.

[3]  Sung Ho Ha,et al.  Helping Online Customers Decide through Web Personalization , 2002, IEEE Intell. Syst..

[4]  Rajiv Khosla,et al.  Engineering Intelligent Hybrid Multi-Agent Systems , 1997, Springer US.

[5]  Bradley N. Miller,et al.  GroupLens: applying collaborative filtering to Usenet news , 1997, CACM.

[6]  Michael D. Smith,et al.  Using Path Profiles to Predict HTTP Requests , 1998, Comput. Networks.

[7]  Thorsten Joachims,et al.  WebWatcher : A Learning Apprentice for the World Wide Web , 1995 .

[8]  Katia P. Sycara,et al.  WebMate: a personal agent for browsing and searching , 1998, AGENTS '98.

[9]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[10]  Rajiv Khosla,et al.  Intelligent Agent-Based Framework for Mining Customer Buying Habits in E-Commerce , 2002, ICEIS.

[11]  Maurice D. Mulvenna,et al.  Discovering Internet marketing intelligence through online analytical web usage mining , 1998, SGMD.

[12]  Rajiv Khosla,et al.  Intelligent Multimedia Multi-Agent Systems : a Human-Centered Approach , 2000 .

[13]  Giles,et al.  Searching the world wide Web , 1998, Science.

[14]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[15]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[16]  Bamshad Mobasher,et al.  Using Ontologies to Discover Domain-Level Web Usage Profiles , 2002 .

[17]  Umeshwar Dayal,et al.  From User Access Patterns to Dynamic Hypertext Linking , 1996, Comput. Networks.

[18]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[19]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[20]  Gediminas Adomavicius,et al.  Using Data Mining Methods to Build Customer Profiles , 2001, Computer.

[21]  Gerhard Weiss,et al.  Multiagent Systems , 1999 .

[22]  Michael J. Pazzani,et al.  Syskill & Webert: Identifying Interesting Web Sites , 1996, AAAI/IAAI, Vol. 1.