Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes

[1]  Richard T. Lee,et al.  Mechanisms of Cardiac Regeneration. , 2016, Developmental cell.

[2]  Ravi Karra,et al.  Single epicardial cell transcriptome sequencing identifies Caveolin 1 as an essential factor in zebrafish heart regeneration , 2016, Development.

[3]  Alexander van Oudenaarden,et al.  Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. , 2016, Developmental cell.

[4]  J. Mullins,et al.  CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart , 2015, Journal of Cell Science.

[5]  P. Burridge,et al.  Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine. , 2015, Annual review of genetics.

[6]  Viravuth P. Yin,et al.  Dynamic microRNA-101a and Fosab expression controls zebrafish heart regeneration , 2015, Development.

[7]  Ravi Karra,et al.  Myocardial NF-κB activation is essential for zebrafish heart regeneration , 2015, Proceedings of the National Academy of Sciences.

[8]  Jonathan E. Hempel,et al.  Matrigel Mattress: A Method for the Generation of Single Contracting Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. , 2015, Circulation research.

[9]  A. Zapata,et al.  Telomerase Is Essential for Zebrafish Heart Regeneration , 2015, Cell reports.

[10]  R. Passier,et al.  Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells , 2015, Nature Biotechnology.

[11]  M. Selig,et al.  Fetal Mammalian Heart Generates a Robust Compensatory Response to Cell Loss , 2015, Circulation.

[12]  Jens R. Nyengaard,et al.  Dynamics of Cell Generation and Turnover in the Human Heart , 2015, Cell.

[13]  B. Grunow,et al.  Generating an in vitro 3D cell culture model from zebrafish larvae for heart research , 2015, The Journal of Experimental Biology.

[14]  Ravi Karra,et al.  Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish , 2015, eLife.

[15]  K. Chien,et al.  Programming and reprogramming a human heart cell , 2015, The EMBO journal.

[16]  Mark D. Huffman,et al.  AHA Statistical Update Heart Disease and Stroke Statistics — 2012 Update A Report From the American Heart Association WRITING GROUP MEMBERS , 2010 .

[17]  Yasunari Kanda,et al.  Image-based evaluation of contraction-relaxation kinetics of human-induced pluripotent stem cell-derived cardiomyocytes: Correlation and complementarity with extracellular electrophysiology. , 2014, Journal of molecular and cellular cardiology.

[18]  J. Molkentin,et al.  An emerging consensus on cardiac regeneration , 2014, Nature Medicine.

[19]  K. Kikuchi,et al.  Advances in understanding the mechanism of zebrafish heart regeneration. , 2014, Stem cell research.

[20]  Ashley R Bonneau,et al.  Zygotic genome activation during the maternal-to-zygotic transition. , 2014, Annual review of cell and developmental biology.

[21]  J. Y. Gan,et al.  Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. , 2014, Zebrafish.

[22]  F. Tang,et al.  The DNA methylation landscape of human early embryos , 2014, Nature.

[23]  R. Peterson,et al.  The zebrafish as a tool to identify novel therapies for human cardiovascular disease , 2014, Disease Models & Mechanisms.

[24]  Praveen Shukla,et al.  Chemically defined generation of human cardiomyocytes , 2014, Nature Methods.

[25]  U. Nielsen,et al.  Insulin‐Like Growth Factor Promotes Cardiac Lineage Induction In Vitro by Selective Expansion of Early Mesoderm , 2014, Stem cells.

[26]  Yunhan Hong,et al.  Derivation of stable zebrafish ES-like cells in feeder-free culture , 2014, Cell and Tissue Research.

[27]  Charles E. Murry,et al.  Human Embryonic Stem Cell-Derived Cardiomyocytes Regenerate Non-Human Primate Hearts , 2014, Nature.

[28]  L. Zon,et al.  A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species , 2013, Cell.

[29]  Miler T. Lee,et al.  Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition , 2013, Nature.

[30]  Ronald A. Li,et al.  Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction , 2013, Nature Biotechnology.

[31]  W. Driever,et al.  Pou5f1 Transcription Factor Controls Zygotic Gene Activation In Vertebrates , 2013, Science.

[32]  Hans R. Schöler,et al.  Establishment of totipotency does not depend on Oct4A , 2013, Nature Cell Biology.

[33]  Lior Gepstein,et al.  Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients. , 2013, European heart journal.

[34]  J. C. Belmonte,et al.  Isolation and in vitro culture of primary cardiomyocytes from adult zebrafish hearts , 2013, Nature Protocols.

[35]  L. Zentilin,et al.  Functional screening identifies miRNAs inducing cardiac regeneration , 2012, Nature.

[36]  Arie O. Verkerk,et al.  Identification and Functional Characterization of Cardiac Pacemaker Cells in Zebrafish , 2012, PloS one.

[37]  Shuo Lin,et al.  High-throughput screening for bioactive molecules using primary cell culture of transgenic zebrafish embryos. , 2012, Cell reports.

[38]  Sean P. Palecek,et al.  Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling , 2012, Proceedings of the National Academy of Sciences.

[39]  D. Stainier,et al.  Zebrafish in the study of early cardiac development. , 2012, Circulation research.

[40]  R. Young,et al.  Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. , 2012, Developmental cell.

[41]  Terri T. Ni,et al.  Discovering small molecules that promote cardiomyocyte generation by modulating Wnt signaling. , 2011, Chemistry & biology.

[42]  Mark F. Lythgoe,et al.  De novo cardiomyocytes from within the activated adult heart after injury , 2011, Nature.

[43]  J. I. Izpisúa Belmonte,et al.  Study of pluripotency markers in zebrafish embryos and transient embryonic stem cell cultures. , 2011, Zebrafish.

[44]  Jeroen Bakkers,et al.  Zebrafish as a model to study cardiac development and human cardiac disease , 2011, Cardiovascular research.

[45]  M. Ekker,et al.  In vivo and in vitro assessment of cardiac β-adrenergic receptors in larval zebrafish (Danio rerio) , 2011, Journal of Experimental Biology.

[46]  C. Murry,et al.  Heart regeneration , 2011, Nature.

[47]  E. Olson,et al.  Transient Regenerative Potential of the Neonatal Mouse Heart , 2011, Science.

[48]  Anders Lindahl,et al.  Cardiomyocyte clusters derived from human embryonic stem cells share similarities with human heart tissue. , 2010, Journal of molecular cell biology.

[49]  V. Vedantham,et al.  Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors , 2010, Cell.

[50]  D. Roden,et al.  Voltage-Gated Sodium Channels Are Required for Heart Development in Zebrafish , 2010, Circulation research.

[51]  J. C. Belmonte,et al.  Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation , 2010, Nature.

[52]  Wael Tadros,et al.  The maternal-to-zygotic transition: a play in two acts , 2009, Development.

[53]  Kevin Bersell,et al.  Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury , 2009, Cell.

[54]  Sean P. Palecek,et al.  Functional Cardiomyocytes Derived From Human Induced Pluripotent Stem Cells , 2009, Circulation research.

[55]  D. Leroith,et al.  The role of insulin receptor signaling in zebrafish embryogenesis. , 2008, Endocrinology.

[56]  F. Brette,et al.  Characterization of isolated ventricular myocytes from adult zebrafish (Danio rerio) , 2008, Biochemical and biophysical research communications.

[57]  Jan Huisken,et al.  Zebrafish model for human long QT syndrome , 2007, Proceedings of the National Academy of Sciences.

[58]  Madhusudhan R. Papasani,et al.  Early developmental expression of two insulins in zebrafish (Danio rerio). , 2006, Physiological genomics.

[59]  Z. Gong,et al.  Transcriptome Analysis of Zebrafish Embryogenesis Using Microarrays , 2005, PLoS genetics.

[60]  P. Aleström,et al.  Zebrafish embryo cells remain pluripotent and germ-line competent for multiple passages in culture. , 2004, Zebrafish.

[61]  Á. Raya,et al.  Activation of Notch signaling pathway precedes heart regeneration in zebrafish , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  James A Thomson,et al.  Human Embryonic Stem Cells Develop Into Multiple Types of Cardiac Myocytes: Action Potential Characterization , 2003, Circulation research.

[63]  M. Keating,et al.  Heart Regeneration in Zebrafish , 2002, Science.

[64]  C. Kimmel,et al.  Stages of embryonic development of the zebrafish , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[65]  R. Ho,et al.  Commitment of cell fate in the early zebrafish embryo. , 1993, Science.

[66]  M. Ieda,et al.  [Direct reprogramming]. , 2016, Nihon rinsho. Japanese journal of clinical medicine.

[67]  Matthew J Winter,et al.  A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function. , 2014, Journal of pharmacological and toxicological methods.

[68]  Ursula Ravens,et al.  Adult zebrafish heart as a model for human heart? An electrophysiological study. , 2010, Journal of molecular and cellular cardiology.

[69]  A. Sharov,et al.  Dynamics of global gene expression changes during mouse preimplantation development. , 2004, Developmental cell.

[70]  H. Takeda,et al.  A novel POU domain gene, zebrafish pou2: expression and roles of two alternatively spliced twin products in early development. , 1994, Genes & development.

[71]  T. Jung Growth and Hyperplasia of Cardiac Muscle Cells , 1994 .