Global weak solutions for the Landau–Lifshitz–Gilbert–Vlasov–Maxwell system coupled via emergent electromagnetic fields

Motivated by recent models of current driven magnetization dynamics, we examine the coupling of the Landau-Lifshitz-Gilbert equation and classical electron transport governed by the Vlasov-Maxwell system. The interaction is based on space-time gyro-coupling in the form of emergent electromagnetic fields of quantized helicity that add up to the conventional Maxwell fields. We construct global weak solutions of the coupled system in the framework of frustrated magnets with competing first and second order gradient interactions known to host topological solitons such as magnetic skyrmions and hopfions.

[1]  C. Melcher,et al.  Strong solvability of regularized stochastic Landau–Lifshitz–Gilbert equation , 2017, 1705.10184.

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[4]  Carlos J. García-Cervera,et al.  Semiclassical Limit of the Schrödinger–Poisson–Landau–Lifshitz–Gilbert System , 2018 .

[5]  Higher moments for kinetic equations: The Vlasov–Poisson and Fokker–Planck cases , 1990 .

[6]  S. Zhang,et al.  Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. , 2004, Physical review letters.

[7]  C. Pfleiderer,et al.  Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.

[8]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[9]  A. Brataas,et al.  Current-Driven Dynamics of Magnetic Hopfions. , 2019, Physical review letters.

[10]  Xu Yang,et al.  A Mean-Field Model for Spin Dynamics in Multilayered Ferromagnetic Media , 2015, Multiscale Model. Simul..

[11]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[12]  S. Heinze,et al.  Isolated zero field sub-10 nm skyrmions in ultrathin Co films , 2019, Nature Communications.

[13]  Matthias Kurzke,et al.  Vortex Motion for the Landau-Lifshitz-Gilbert Equation with Spin-Transfer Torque , 2011, SIAM J. Math. Anal..

[14]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[15]  P. Sutcliffe,et al.  Skyrmion Knots in Frustrated Magnets. , 2017, Physical review letters.

[16]  Mariya Ptashnyk,et al.  Landau-Lifshitz-Slonczewski Equations: Global Weak and Classical Solutions , 2013, SIAM J. Math. Anal..

[17]  Jian-Guo Liu,et al.  On a Schrödinger-Landau-Lifshitz System: Variational Structure and Numerical Methods , 2016, Multiscale Model. Simul..

[18]  P. Lions,et al.  Global weak solutions of Vlasov‐Maxwell systems , 1989 .

[19]  A. Jüngel Transport Equations for Semiconductors , 2009 .

[20]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[21]  Shizeng Lin,et al.  Ginzburg-Landau theory for skyrmions in inversion-symmetric magnets with competing interactions , 2015, 1512.05012.

[22]  C. Melcher,et al.  Compactness results for static and dynamic chiral skyrmions near the conformal limit , 2016, Calculus of Variations and Partial Differential Equations.

[23]  Benoît Perthame,et al.  Global existence to the BGK model of Boltzmann equation , 1989 .

[24]  C. Melcher Chiral skyrmions in the plane , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Xianwen Zhang On the Cauchy Problem of the Vlasov-Poisson-BGK System: Global Existence of Weak Solutions , 2010 .

[26]  Matthias Kurzke,et al.  Ginzburg–Landau Vortices Driven by the Landau–Lifshitz–Gilbert Equation , 2011 .

[27]  C. Melcher,et al.  Stability of axisymmetric chiral skyrmions , 2017, Journal of Functional Analysis.

[28]  C. Melcher Global Solvability of the Cauchy Problem for the Landau-Lifshitz-Gilbert Equation in Higher Dimensions , 2011, 1105.1597.

[29]  Christof Melcher,et al.  Thin-Film Limits for Landau-Lifshitz-Gilbert Equations , 2010, SIAM J. Math. Anal..

[30]  Walter A. Strauss,et al.  Singularity formation in a collisionless plasma could occur only at high velocities , 1986 .

[31]  S. Wollman An existence and uniqueness theorem for the Vlasov-Maxwell system , 1984 .

[32]  Gerhard Rein,et al.  Global Weak Solutions to the Relativistic Vlasov-Maxwell System Revisited , 2004 .

[33]  S. Blugel,et al.  Magnetic hopfions in solids , 2019, APL Materials.