Bounds on net survival probabilities for dependent competing risks.

Bounds on the marginal survival function based on data from a competing-risks experiment are obtained. These bounds require an investigator to specify a range of possible concordances for the times to occurrences of the competing risks. These bounds are tighter than those of Peterson (1976, Proceedings of the National Academy of Sciences 73, 11-13).

[1]  John P. Klein,et al.  Some recent results in competing risks theory , 1982 .

[2]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[3]  W. R. Buckland Theory of Competing Risks , 1978 .

[4]  S. Lagakos,et al.  Models for censored survival analysis: Constant-sum and variable-sum models , 1977 .

[5]  M. Fréchet Sur les tableaux de correlation dont les marges sont donnees , 1951 .

[6]  Consequences of Departures From Independence in Exponential Series Systems , 1984 .

[7]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[8]  Eric V. Slud,et al.  Dependent competing risks and summary survival curves , 1983 .

[9]  S. Lagakos,et al.  Models for censored survival analysis: A cone class of variable-sum models , 1978 .

[10]  T. P. Hutchinson Compound gamma bivariate distributions , 1981 .

[11]  L. J. Wei,et al.  Nonparametric Estimation for a Scale-Change with Censored Observations , 1983 .

[12]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[13]  D. Cox Regression Models and Life-Tables , 1972 .

[14]  Lagakos Sw General right censoring and its impact on the analysis of survival data. , 1979 .

[15]  Wayne S. Smith,et al.  Interactive Elicitation of Opinion for a Normal Linear Model , 1980 .

[16]  T. Holford The analysis of rates and of survivorship using log-linear models. , 1980, Biometrics.