Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity

[1]  A. Ginterová,et al.  Energy transformation of lignocellulosics into fruit bodies of the wood-rotting fungusPlenurotus ostreatus , 1989, Folia Microbiologica.

[2]  Alessandro Gandini,et al.  Chemical Modification of Wood , 2008 .

[3]  Roger M. Rowell,et al.  Effect of Humidity on Vibrational Properties of Chemically Modified Wood , 2007 .

[4]  C. Hill,et al.  Changes in the cell wall volume of a number of wood species due to reaction with acetic anhydride , 2007 .

[5]  H. Militz Die Verbesserung des Schwind- und Quellverhaltens und der Dauerhaftigkeit von Holz mittels Behandlung mit unkatalysiertem Essigsäureanhydrid , 1991, Holz als Roh- und Werkstoff.

[6]  Acetylation of Wood-Journey from Analytical Technique to Commerial Reality , 2007 .

[7]  Holger Militz,et al.  Decay resistance of wood treated with amino-silicone compounds , 2007 .

[8]  F. Beese,et al.  Microbial biomass and activity under oxic and anoxic conditions as affected by nitrate additions , 2006 .

[9]  C. Hill,et al.  Wood Modification: Chemical, Thermal and Other Processes , 2006 .

[10]  G. Carroll,et al.  Fluorescein diacetate hydrolysis as an estimator of microbial biomass on coniferous needle surfaces , 1980, Microbial Ecology.

[11]  G. R. Williams,et al.  An investigation of cell wall micropore blocking as a possible mechanism for the decay resistance of anhydride modified wood , 2005 .

[12]  M. Eikenes,et al.  Chemistry and ecotoxicology of furfurylated wood , 2004 .

[13]  C. Mai,et al.  Wood modification with alkoxysilanes , 2004, Wood Science and Technology.

[14]  Kentaro Suzuki,et al.  Characterization of acetylated wood decayed by brown-rot and white-rot fungi , 1999, Journal of Wood Science.

[15]  H. Militz,et al.  Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability , 1993, Wood Science and Technology.

[16]  H. Yano,et al.  Controlling the timbre of wooden musical instruments by chemical modification , 1993, Wood Science and Technology.

[17]  K. Minato,et al.  Chemical modification of wood by non-formaldehyde cross-linking reagents , 2004, Wood Science and Technology.

[18]  C. Hill,et al.  The biological effectiveness of wood modified with linear chain carboxylic acid anhydrides against Coniophora puteana , 2002, Holz als Roh- und Werkstoff.

[19]  F. Beese,et al.  Use of microcalorimetry to study microbial activity during the transition from oxic to anoxic conditions , 2002, Biology and Fertility of Soils.

[20]  L. Wadsö,et al.  Microcalorimetric measurements of metabolic activity of six decay fungi on spruce wood as a function of temperature , 2000 .

[21]  C. Hill,et al.  Dimensional Changes in Corsican Pine Sapwood due to Chemical Modification with Linear Chain Anhydrides , 1999 .

[22]  Yi-min Xie,et al.  Microcalorimetric Characterization of the Recovery of a Brown-Rot Fungus after Exposures to High and Low Temperature, Oxygen Depletion, and Drying , 1997 .

[23]  S. Yusuf PROPERTIES ENHANCEMENT OF WOOD BY CROSS-LINGKING FORMATION AND ITS APPLICATION TO THE RECONSTITUTED WOOD PRODUCTS , 1996 .

[24]  C. Hill,et al.  The Dimensional Stabilisation of Corsican Pine Sapwood by Reaction with Carboxylic Acid Anhydrides. The Effect of Chain Length , 1996 .

[25]  J. Bjurman Ergosterol as an indicator of mould growth on wood in relation to culture age, humidity stress and nutrient level , 1994 .

[26]  G. Saxena,et al.  Observation of nematophagous fungi in natural soils by fluorescence microscopy and their correlation with isolation , 1993 .

[27]  L. Gustafsson,et al.  Energy flux and osmoregulation of Saccharomyces cerevisiae grown in chemostats under NaCl stress , 1993, Journal of bacteriology.

[28]  M. Hale,et al.  Wood : decay, pests, and protection , 1993 .

[29]  Y. Hadar,et al.  Lignocellulose Degradation during Solid-State Fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium , 1992, Applied and environmental microbiology.

[30]  H. Barnes,et al.  Laboratory Methods to Predict the Weathering Characteristics of Wood , 1992 .

[31]  Gunnar Lidén,et al.  Calorimetric control of fed-batch cultures of Saccharomyces cerevisiae , 1991 .

[32]  D. Rank,et al.  Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. , 1991, Analytical biochemistry.

[33]  D. Hon,et al.  Wood and Cellulosic Chemistry , 1990 .

[34]  Theodore C. Scheffer,et al.  O2 requirements for growth and survival of wood-decaying and sapwood-staining fungi , 1986 .

[35]  G. Sparling Estimation of microbial biomass and activity in soil using microcalorimetry , 1983 .

[36]  T. Rosswall,et al.  Fluorescein Diacetate Hydrolysis as a Measure of Total Microbial Activity in Soil and Litter , 1982, Applied and environmental microbiology.

[37]  J. Belaich,et al.  Microcalorimetric study of Escherichia coli aerobic growth: theoretical aspects of growth on succinic acid , 1980, Journal of bacteriology.

[38]  I. Wadsö,et al.  Use of microcalorimetry for the characterization of microbial activity in soil , 1979 .

[39]  G. Guilbault,et al.  Fluorometric Determination of Lipase, Acylase, Alpha-, and Gamma-Chymotrypsin and Inhibitors of These Enzymes. , 1964 .

[40]  I. S. Goldstein,et al.  Acetylation of wood in lumber thickness , 1961 .