Combinatorics of X-variables in finite type cluster algebras

Abstract We compute the number of X -variables (also called coefficients) of a cluster algebra of finite type when the underlying semifield is the universal semifield. For classical types, these numbers arise from a bijection between coefficients and quadrilaterals (with a choice of diagonal) appearing in triangulations of certain marked surfaces. We conjecture that similar results hold for cluster algebras from arbitrary marked surfaces, and obtain corollaries regarding the structure of finite type cluster algebras of geometric type.

[1]  N. Bourbaki,et al.  Lie Groups and Lie Algebras: Chapters 1-3 , 1989 .

[2]  S. Fomin,et al.  Cluster algebras IV: Coefficients , 2006, Compositio Mathematica.

[3]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[4]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[5]  S. Fomin,et al.  Introduction to Cluster Algebras. Chapters 1-3 , 2016, 1608.05735.

[6]  M. Dorigo,et al.  Observation of associated production of a Z boson with a D meson in the forward region , 2014, Journal of High Energy Physics.

[7]  Cluster ensembles, quantization and the dilogarithm , 2003, math/0311245.

[8]  D. Rupel,et al.  Introduction to Cluster Algebras , 2018, 1803.08960.

[9]  J. Golden,et al.  Motivic amplitudes and cluster coordinates , 2013, 1305.1617.

[10]  Sergey Fomin,et al.  Cluster algebras and triangulated surfaces. Part I: Cluster complexes , 2006 .

[11]  David E. Speyer,et al.  Acyclic Cluster Algebras Revisited , 2012, 1203.0277.

[12]  Cluster Algebras and Poisson Geometry , 2002, math/0208033.

[13]  Cluster Ensembles, Quantization and the Dilogarithm II: The Intertwiner , 2007, math/0702398.

[14]  S. Fomin,et al.  Parametrizations of Canonical Bases and Totally Positive Matrices , 1996 .

[15]  Bernard Leclerc,et al.  Cluster algebras , 2014, Proceedings of the National Academy of Sciences.

[16]  Yang-Mills. Cluster Algebra Structures for Scattering Amplitudes in N = 4 Super , 2015 .

[17]  Paul Hacking,et al.  Canonical bases for cluster algebras , 2014, 1411.1394.

[18]  Ahmet I. Seven Cluster algebras and symmetric matrices , 2012, 1201.4270.