On logical hierarchies within FO2-definable languages

We consider the class of languages defined in the 2-variable fragment of the first-order logic of the linear order. Many interesting characterizations of this class are known, as well as the fact that restricting the number of quantifier alternations yields an infinite hierarchy whose levels are varieties of languages (and hence admit an algebraic characterization). Using this algebraic approach, we show that the quantifier alternation hierarchy inside FO^{2}[<] is decidable within one unit. For this purpose, we relate each level of the hierarchy with decidable varieties of languages, which can be defined in terms of iterated deterministic and co-deterministic products. A crucial notion in this process is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle languages of Schwentick, Th\'erien and Vollmer.

[1]  Nicole Schweikardt,et al.  The succinctness of first-order logic on linear orders , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[2]  Paul Gastin,et al.  Pure future local temporal logics are expressively complete for Mazurkiewicz traces , 2004, Inf. Comput..

[3]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[4]  Kamal Lodaya,et al.  Marking the chops: an unambiguous temporal logic , 2008, IFIP TCS.

[5]  Manfred Kufleitner Polynomials, fragments of temporal logic and the variety DA over traces , 2007, Theor. Comput. Sci..

[6]  Denis Thérien,et al.  DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .

[7]  Kousha Etessami,et al.  First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..

[8]  Manfred Kufleitner,et al.  Lattices of Logical Fragments over Words - (Extended Abstract) , 2012, ICALP.

[9]  Manfred Kufleitner,et al.  On the lattice of sub-pseudovarieties of DA , 2009, 0904.2893.

[10]  Jorge Almeida,et al.  Finite Semigroups and Universal Algebra , 1995 .

[11]  Dung T. Huynh,et al.  Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..

[12]  Neil Immerman,et al.  Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2007, CSL.

[13]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[14]  Neil Immerman,et al.  An n! lower bound on formula size , 2003, TOCL.

[15]  M. W. Shields An Introduction to Automata Theory , 1988 .

[16]  Howard Straubing,et al.  Locally trivial categories and unambiguous concatenation , 1988 .

[17]  Wolfgang Thomas,et al.  Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..

[18]  Raymond E. Miller,et al.  Varieties of Formal Languages , 1986 .

[19]  J. Gerhard,et al.  The lattice of equational classes of idempotent semigroups , 1970 .

[20]  Howard Straubing Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.

[21]  T. E. Hall,et al.  On Radical Congruence Systems , 1999 .

[22]  Denis Thérien,et al.  Logic Meets Algebra: the Case of Regular Languages , 2007, Log. Methods Comput. Sci..

[23]  Peter G. Trotter,et al.  The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue , 1997 .

[24]  Jean-Éric Pin Expressive power of existential first-order sentences of Bu"chi's sequential calculus , 2005, Discret. Math..

[25]  Thomas Schwentick,et al.  Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.