On logical hierarchies within FO2-definable languages
暂无分享,去创建一个
[1] Nicole Schweikardt,et al. The succinctness of first-order logic on linear orders , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[2] Paul Gastin,et al. Pure future local temporal logics are expressively complete for Mazurkiewicz traces , 2004, Inf. Comput..
[3] Marcel Paul Schützenberger,et al. On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..
[4] Kamal Lodaya,et al. Marking the chops: an unambiguous temporal logic , 2008, IFIP TCS.
[5] Manfred Kufleitner. Polynomials, fragments of temporal logic and the variety DA over traces , 2007, Theor. Comput. Sci..
[6] Denis Thérien,et al. DIAMONDS ARE FOREVER: THE VARIETY DA , 2002 .
[7] Kousha Etessami,et al. First-Order Logic with Two Variables and Unary Temporal Logic , 2002, Inf. Comput..
[8] Manfred Kufleitner,et al. Lattices of Logical Fragments over Words - (Extended Abstract) , 2012, ICALP.
[9] Manfred Kufleitner,et al. On the lattice of sub-pseudovarieties of DA , 2009, 0904.2893.
[10] Jorge Almeida,et al. Finite Semigroups and Universal Algebra , 1995 .
[11] Dung T. Huynh,et al. Finite-Automaton Aperiodicity is PSPACE-Complete , 1991, Theor. Comput. Sci..
[12] Neil Immerman,et al. Structure Theorem and Strict Alternation Hierarchy for FO2 on Words , 2007, CSL.
[13] R. McNaughton,et al. Counter-Free Automata , 1971 .
[14] Neil Immerman,et al. An n! lower bound on formula size , 2003, TOCL.
[15] M. W. Shields. An Introduction to Automata Theory , 1988 .
[16] Howard Straubing,et al. Locally trivial categories and unambiguous concatenation , 1988 .
[17] Wolfgang Thomas,et al. Classifying Regular Events in Symbolic Logic , 1982, J. Comput. Syst. Sci..
[18] Raymond E. Miller,et al. Varieties of Formal Languages , 1986 .
[19] J. Gerhard,et al. The lattice of equational classes of idempotent semigroups , 1970 .
[20] Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity , 1994, Progress in Theoretical Computer Science.
[21] T. E. Hall,et al. On Radical Congruence Systems , 1999 .
[22] Denis Thérien,et al. Logic Meets Algebra: the Case of Regular Languages , 2007, Log. Methods Comput. Sci..
[23] Peter G. Trotter,et al. The lattice of pseudovarieties of idempotent semigroups and a non-regular analogue , 1997 .
[24] Jean-Éric Pin. Expressive power of existential first-order sentences of Bu"chi's sequential calculus , 2005, Discret. Math..
[25] Thomas Schwentick,et al. Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.