Efficient and stable numerical algorithms on equilibrium equations for geometric modeling

In this paper the applications of equilibrium equation to geometric modeling is exploited and efficient numerical algorithms are proposed for solving the equilibrium equation. First we show that from diverse geometric modeling applications the equilibrium system can be extracted as the central framework. Second, by exploiting in-depth the special structures inherent in the geometric applications, we present simplified analytic solutions to the resulting geometric equilibrium equations via system decomposition. Finally, given the observation that the geometric equilibrium systems are extremely sensitive to both perturbations in input data and round off errors, efficient, stable and accurate numerical algorithms are proposed.

[1]  Yinyu Ye,et al.  A primal-dual interior point method whose running time depends only on the constraint matrix , 1996, Math. Program..

[2]  Stephen A. Vavasis Gaussian Elimination with Pivoting is P-Complete , 1989, SIAM J. Discret. Math..

[3]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[4]  Pritam Ganguly,et al.  Spatial convergence of crack nucleation using a cohesive finite‐element model on a pinwheel‐based mesh , 2006 .

[5]  Stephen A. Vavasis,et al.  A Fully Sparse Implementation of a Primal-Dual Interior-Point Potential Reduction Method for Semidefinite Programming , 2004, ArXiv.

[6]  Stephen A. Vavasis,et al.  Complete Orthogonal Decomposition for Weighted Least Squares , 1995 .

[7]  Stephen A. Vavasis,et al.  Automatic Domain Partitioning in Three Dimensions , 1991, SIAM J. Sci. Comput..

[8]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[9]  S. Vavasis A note on efficient computation of the gradient in semidefinite programming ∗ , 1999 .

[10]  Stephen A. Vavasis,et al.  Black-Box Complexity of Local Minimization , 1993, SIAM J. Optim..

[11]  Steven M. Seitz,et al.  Single-view modelling of free-form scenes , 2002, Comput. Animat. Virtual Worlds.

[12]  Mark Meyer,et al.  Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.

[13]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[14]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[15]  Hans-Peter Seidel,et al.  Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.

[16]  Per Christian Hansen,et al.  Computing Symmetric Rank-Revealing Decompositions via Triangular Factorization , 2001, SIAM J. Matrix Anal. Appl..

[17]  S. Vavasis Nonlinear optimization: complexity issues , 1991 .

[18]  Stephen A. Vavasis,et al.  Accurate solution of polynomial equations using Macaulay resultant matrices , 2004, Math. Comput..

[19]  Stephen A. Vavasis,et al.  Quadratic Programming is in NP , 1990, Inf. Process. Lett..

[20]  Stephen A. Vavasis,et al.  An Iterative Method for Solving Complex-Symmetric Systems Arising in Electrical Power Modeling , 2005, SIAM J. Matrix Anal. Appl..

[21]  Suzanne M. Shontz,et al.  A linear weighted laplacian smoothing framework for warping tetrahedral meshes , 2004, ArXiv.

[22]  Stephen A. Vavasis,et al.  Accurate Solution of Weighted Least Squares by Iterative Methods , 2000, SIAM J. Matrix Anal. Appl..

[23]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[24]  Heinrich Müller,et al.  Image warping with scattered data interpolation , 1995, IEEE Computer Graphics and Applications.

[25]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[26]  Li Zhang,et al.  Single view modeling of free-form scenes , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[27]  Stephen A. Vavasis,et al.  Time continuity in cohesive finite element modeling , 2003 .

[28]  S. Vavasis Stable Numerical Algorithms for Equilibrium Systems , 1994, SIAM J. Matrix Anal. Appl..

[29]  Demetri Terzopoulos,et al.  Regularization of Inverse Visual Problems Involving Discontinuities , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Julio Michael Stern,et al.  Nested Dissection for Sparse Nullspace Bases , 1993 .

[31]  Yinyu Ye,et al.  Identifying an optimal basis in linear programming , 1996, Ann. Oper. Res..

[32]  Tobin A. Driscoll,et al.  Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation , 1998, SIAM J. Sci. Comput..

[33]  G. Strang A Framework for Equilibrium Equations , 1988 .

[34]  Stephen A. Vavasis,et al.  A norm bound for projections with complex weights , 2000 .

[35]  Scott A. Mitchell,et al.  Quality Mesh Generation in Higher Dimensions , 2000, SIAM J. Comput..

[36]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2005, SIGGRAPH Courses.

[37]  Stephen A. Vavasis,et al.  Local minima for indefinite quadratic knapsack problems , 1992, Math. Program..

[38]  Ron Brown,et al.  Algorithm 792: accuracy test of ACM algorithms for interpolation of scattered data in the plane , 1999, TOMS.

[39]  W. Gragg,et al.  Singular value decompositions of complex symmetric matrices , 1988 .

[40]  Gene H. Golub,et al.  Matrix computations , 1983 .

[41]  Ward Cheney,et al.  A course in approximation theory , 1999 .

[42]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[43]  Dimitris N. Metaxas,et al.  Reconstruction of a color image from nonuniformly distributed sparse and noisy data , 1992, CVGIP Graph. Model. Image Process..

[44]  S. Vavasis Stable finite elements for problems with wild coefficients , 1996 .

[45]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[46]  S. Vavasis COMPLEXITY ISSUES IN GLOBAL OPTIMIZATION: A SURVEY , 1995 .

[47]  S. Vavasis On approximation algorithms for concave quadratic programming , 1992 .

[48]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[49]  Stephen A. Vavasis,et al.  Approximation algorithms for indefinite quadratic programming , 1992, Math. Program..

[50]  Scott A. Mitchell,et al.  An aspect ratio bound for triangulating a d-grid cut by a hyperplane (extended abstract) , 1995, SCG '96.

[51]  Gary L. Miller,et al.  Separators for sphere-packings and nearest neighbor graphs , 1997, JACM.

[52]  Jorge J. Moré,et al.  On the solution of concave knapsack problems , 1990, Math. Program..

[53]  Christos H. Papadimitriou,et al.  Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[54]  Pritam Ganguly,et al.  An Algorithm for Two-Dimensional Mesh Generation Based on the Pinwheel Tiling , 2004, SIAM J. Sci. Comput..

[55]  Stephen A. Vavasis,et al.  Solving Polynomials with Small Leading Coefficients , 2005, SIAM J. Matrix Anal. Appl..

[56]  Demetri Terzopoulos,et al.  The Computation of Visible-Surface Representations , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Stephen A. Vavasis,et al.  Obtaining initially rigid cohesive finite element models that are temporally convergent , 2005 .

[58]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .