Sequential monte carlo techniques for the solution of linear systems

AbstractGiven alinear system Ax=b, wherex is anm-vector,direct numerical methods, such as Gaussian elimination, take timeO(m3) to findx. Iterative numerical methods, such as the Gauss-Seidel method or SOR, reduce the system to the formx=a+Hx, whence $$x = \sum\nolimits_{r = 0}^\infty {H^r a} ;$$ and then apply the iterationsx0=a,xs+1=a+Hxs, until sufficient accuracy is achieved; this takes timeO(m2) per iteration. They generate the truncated sums $$x_s = \sum\nolimits_{r = 0}^\infty {H^r a} .$$ The usualplain Monte Carlo approach uses independent “random walks”, to give an approximation to the truncated sumxs, taking timeO(m) per random step. Unfortunately, millions of random steps are typically needed to achieve reasonable accuracy (say, 1% r.m.s. error). Nevertheless, this is what has had to be done, ifm is itself of the order of a million or more.The alternative presented here, is to apply a sequential Monte Carlo method, in which the sampling scheme is iteratively improved. Simply put, ifx=y+z, wherey is a current estimate ofx, then its correction,z, satisfiesz=d+Hz, whered=a+Hy−y. At each stage, one uses plain Monte Carlo to estimatez, and so, the new estimatey. If the sequential computation ofd is itself approximated, numerically or stochastically, then the expected time for this process to reach a given accuracy is againO(m) per random step; but the number of steps is dramatically reduced [improvement factors of about 5,000, 26,000, 550, and 1,500 have been obtained in preliminary tests].

[1]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[2]  J. Wolfowitz,et al.  On Sequential Binomial Estimation , 1946 .

[3]  J. Wolfowitz The Efficiency of Sequential Estimates and Wald's Equation for Sequential Processes , 1947 .

[4]  J Wolfowitz,et al.  Bayes Solutions of Sequential Decision Problems. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Wolfowitz,et al.  Bayes Solutions of Sequential Decision Problems , 1950 .

[6]  R. A. Leibler,et al.  Matrix inversion by a Monte Carlo method , 1950 .

[7]  W. Wasow,et al.  On the Duration of Random Walks , 1951 .

[8]  W. Wasow On the mean duration of random walks , 1951 .

[9]  W. Wasow Random walks and the eigenvalues of elliptic difference equations , 1951 .

[10]  R. Cutkosky A MONTE CARLO METHOD FOR SOLVING A CLASS OF INTEGRAL EQUATIONS , 1951 .

[11]  W. Wasow A note on the inversion of matrices by random walks , 1952 .

[12]  E. S. Page,et al.  The Monte Carlo solution of some integral equations , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Mervin E. Muller,et al.  On Discrete Operators Connected with the Dirichlet Problem , 1956 .

[14]  M. E. Muller Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .

[15]  J. Hammersley,et al.  A new Monte Carlo technique: antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[16]  J. G. Mauldon,et al.  General principles of antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[17]  D. C. Handscomb,et al.  A Method for Increasing the Efficiency of Monte Carlo Integration , 1957, JACM.

[18]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[19]  J. M. Hammersley,et al.  Proof of the antithetic variates theorem for n > 2 , 1958 .

[20]  R. R. Coveyou Serial Correlation in the Generation of Pseudo-Random Numbers , 1960, JACM.

[21]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[22]  A. Rotenberg,et al.  A New Pseudo-Random Number Generator , 1960, JACM.

[23]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[24]  J. Halton Sequential Monte Carlo , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  J. Franklin Deterministic Simulation of Random Processes , 1963 .

[26]  J. Halton,et al.  Algorithm 247: Radical-inverse quasi-random point sequence , 1964, CACM.

[27]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[28]  J. Halton On the relative merits of correlated and importance sampling for Monte Carlo integration , 1965 .

[29]  John H. Halton,et al.  The distribution of the sequence {nξ}(n = 0, 1, 2, …) , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[31]  W. Reiher Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .

[32]  John H. Halton An interpretation of negative probabilities , 1966 .

[33]  John H. Halton SEQUENTIAL MONTE CARLO (REVISED). , 1967 .

[34]  On Sequential Binomial Estimation , 1968 .

[35]  S. K. Zaremba,et al.  The extreme and L2 discrepancies of some plane sets , 1969 .

[36]  J. Halton A Retrospective and Prospective Survey of the Monte Carlo Method , 1970 .

[37]  John H. Halton,et al.  Estimating the Accuracy of Quasi-Monte Carlo Integration , 1972 .

[38]  G. Stewart Introduction to matrix computations , 1973 .

[39]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[40]  L. L. Carter,et al.  Particle Transport Simulation with the Monte Carlo Method; Prepared for the Division of Military Application, U.S. Energy Research and Development Administration , 1975 .

[41]  F. David,et al.  Statistical Techniques in Simulation: Part I , 1975 .

[42]  Jack P. C. Kleijnen,et al.  Statistical Techniques in Simulation , 1977, IEEE Transactions on Systems, Man and Cybernetics.

[43]  Jack P. C. Kleijnen,et al.  Statistical Techniques in Simulation , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[44]  Robert E. Kalaba,et al.  Computational Probability and Simulation. , 1978 .

[45]  Matias Remes,et al.  Basics. , 1978, Cue and Cut.

[46]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[47]  Reuven Y. Rubinstein,et al.  Simulation and the Monte Carlo Method , 1981 .

[48]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[49]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[50]  Paul Peart,et al.  The dispersion of the Hammersley Sequence in the unit square , 1982 .

[51]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[52]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[53]  John H. Halton On the efficiency of generalized antithetic transformations for Monte Carlo integration , 1988 .

[54]  John H. Halton,et al.  Pseudo-random trees: multiple independent sequence generators for parallel and branching computations , 1989 .

[55]  John H. Halton,et al.  Random sequences in Fréchet spaces , 1991 .

[56]  John H. Halton,et al.  Random sequences in generalized Cantor sets , 1991 .

[57]  John H. Halton,et al.  Reject the rejection technique , 1992 .