Sequential monte carlo techniques for the solution of linear systems
暂无分享,去创建一个
[1] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[2] J. Wolfowitz,et al. On Sequential Binomial Estimation , 1946 .
[3] J. Wolfowitz. The Efficiency of Sequential Estimates and Wald's Equation for Sequential Processes , 1947 .
[4] J Wolfowitz,et al. Bayes Solutions of Sequential Decision Problems. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[5] J. Wolfowitz,et al. Bayes Solutions of Sequential Decision Problems , 1950 .
[6] R. A. Leibler,et al. Matrix inversion by a Monte Carlo method , 1950 .
[7] W. Wasow,et al. On the Duration of Random Walks , 1951 .
[8] W. Wasow. On the mean duration of random walks , 1951 .
[9] W. Wasow. Random walks and the eigenvalues of elliptic difference equations , 1951 .
[10] R. Cutkosky. A MONTE CARLO METHOD FOR SOLVING A CLASS OF INTEGRAL EQUATIONS , 1951 .
[11] W. Wasow. A note on the inversion of matrices by random walks , 1952 .
[12] E. S. Page,et al. The Monte Carlo solution of some integral equations , 1954, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Mervin E. Muller,et al. On Discrete Operators Connected with the Dirichlet Problem , 1956 .
[14] M. E. Muller. Some Continuous Monte Carlo Methods for the Dirichlet Problem , 1956 .
[15] J. Hammersley,et al. A new Monte Carlo technique: antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] J. G. Mauldon,et al. General principles of antithetic variates , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[17] D. C. Handscomb,et al. A Method for Increasing the Efficiency of Monte Carlo Integration , 1957, JACM.
[18] R. D. Richtmyer,et al. Difference methods for initial-value problems , 1959 .
[19] J. M. Hammersley,et al. Proof of the antithetic variates theorem for n > 2 , 1958 .
[20] R. R. Coveyou. Serial Correlation in the Generation of Pseudo-Random Numbers , 1960, JACM.
[21] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[22] A. Rotenberg,et al. A New Pseudo-Random Number Generator , 1960, JACM.
[23] J. Gillis,et al. Matrix Iterative Analysis , 1961 .
[24] J. Halton. Sequential Monte Carlo , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[25] J. Franklin. Deterministic Simulation of Random Processes , 1963 .
[26] J. Halton,et al. Algorithm 247: Radical-inverse quasi-random point sequence , 1964, CACM.
[27] J. Hammersley,et al. Monte Carlo Methods , 1965 .
[28] J. Halton. On the relative merits of correlated and importance sampling for Monte Carlo integration , 1965 .
[29] John H. Halton,et al. The distribution of the sequence {nξ}(n = 0, 1, 2, …) , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[31] W. Reiher. Hammersley, J. M., D. C. Handscomb: Monte Carlo Methods. Methuen & Co., London, and John Wiley & Sons, New York, 1964. VII + 178 S., Preis: 25 s , 1966 .
[32] John H. Halton. An interpretation of negative probabilities , 1966 .
[33] John H. Halton. SEQUENTIAL MONTE CARLO (REVISED). , 1967 .
[34] On Sequential Binomial Estimation , 1968 .
[35] S. K. Zaremba,et al. The extreme and L2 discrepancies of some plane sets , 1969 .
[36] J. Halton. A Retrospective and Prospective Survey of the Monte Carlo Method , 1970 .
[37] John H. Halton,et al. Estimating the Accuracy of Quasi-Monte Carlo Integration , 1972 .
[38] G. Stewart. Introduction to matrix computations , 1973 .
[39] Åke Björck,et al. Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.
[40] L. L. Carter,et al. Particle Transport Simulation with the Monte Carlo Method; Prepared for the Division of Military Application, U.S. Energy Research and Development Administration , 1975 .
[41] F. David,et al. Statistical Techniques in Simulation: Part I , 1975 .
[42] Jack P. C. Kleijnen,et al. Statistical Techniques in Simulation , 1977, IEEE Transactions on Systems, Man and Cybernetics.
[43] Jack P. C. Kleijnen,et al. Statistical Techniques in Simulation , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[44] Robert E. Kalaba,et al. Computational Probability and Simulation. , 1978 .
[45] Matias Remes,et al. Basics. , 1978, Cue and Cut.
[46] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[47] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo Method , 1981 .
[48] H. Keng,et al. Applications of number theory to numerical analysis , 1981 .
[49] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[50] Paul Peart,et al. The dispersion of the Hammersley Sequence in the unit square , 1982 .
[51] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[52] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[53] John H. Halton. On the efficiency of generalized antithetic transformations for Monte Carlo integration , 1988 .
[54] John H. Halton,et al. Pseudo-random trees: multiple independent sequence generators for parallel and branching computations , 1989 .
[55] John H. Halton,et al. Random sequences in Fréchet spaces , 1991 .
[56] John H. Halton,et al. Random sequences in generalized Cantor sets , 1991 .
[57] John H. Halton,et al. Reject the rejection technique , 1992 .