A FRAMEWORK FOR REPRESENTING AND PRODUCING MOVIES ON QUANTUM COMPUTERS

Adopting a generalization of the DiVincenzo criteria for the physical realization of quantum devices, a standalone component each, is proposed to prepare, manipulate, and measure the various content required to represent and produce movies on quantum computers. The quantum CD encodes, prepares, and initializes the broad content or key frames conveying the movie script. The quantum player uses the simple motion operations to manipulate the contents of the key frames in order to interpolate the missing viewing frames required to effectively depict the shots and scenes of the movie. The movie reader combines the projective measurement technique and the ancilla-driven quantum computation to retrieve the classical movie sequence comprising of both the key and viewing frames for each shot. At appropriate frame transition rates, this sequence creates the impression of continuity in order to depict the various movements and actions in the movie. Two well-thought-out examples demonstrate the feasibility of the proposed framework. Concatenated, these components together facilitate the proposed framework for quantum movie representation and production, thus, opening the door towards manipulating quantum circuits aimed at applications for information representation and processing.

[1]  A. Klappenecker,et al.  Discrete cosine transforms on quantum computers , 2001, ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat..

[2]  Ramesh C. Jain,et al.  Digital video segmentation , 1994, MULTIMEDIA '94.

[3]  Abdullah M. Iliyasu,et al.  Strategies for designing geometric transformations on quantum images , 2011, Theor. Comput. Sci..

[4]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[5]  Timothy F. Havel,et al.  NMR Based Quantum Information Processing: Achievements and Prospects , 2000, quant-ph/0004104.

[6]  Simona Caraiman,et al.  New applications of quantum algorithms to computer graphics: the quantum random sample consensus algorithm , 2009, CF '09.

[7]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[8]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[9]  Elham Kashefi,et al.  Ancilla-driven universal quantum computation , 2010 .

[10]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[11]  J. D. Franson,et al.  Experimental demonstration of a quantum circuit using linear optics gates , 2005 .

[12]  Chris Lomont,et al.  Quantum image processing (QuIP) , 2003, 32nd Applied Imagery Pattern Recognition Workshop, 2003. Proceedings..

[13]  Chris Lomont Quantum convolution and quantum correlation algorithms are physically impossible , 2003 .

[14]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Gerhard W. Dueck,et al.  Quantum Circuit Simplification and Level Compaction , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  C. Tseng,et al.  Quantum circuit design of 8/spl times/8 discrete cosine transform using its fast computation flow graph , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  Sougato Bose,et al.  Storing, processing, and retrieving an image using quantum mechanics , 2003, SPIE Defense + Commercial Sensing.

[19]  Kaoru Hirota,et al.  A flexible representation of quantum images for polynomial preparation, image compression, and processing operations , 2011, Quantum Inf. Process..

[20]  Keiji Sasaki,et al.  An Entanglement Filter , 2009, Science.

[21]  Elham Kashefi,et al.  Ancilla-driven quantum computation with twisted graph states , 2012, Theor. Comput. Sci..

[22]  Anthony Laing,et al.  High-fidelity operation of quantum photonic circuits , 2010, 1004.0326.

[23]  Amir Fijany,et al.  Quantum Wavelet Transforms: Fast Algorithms and Complete Circuits , 1998, QCQC.

[24]  G. Milburn,et al.  Experimental requirements for Grover’s algorithm in optical quantum computation , 2003, quant-ph/0306081.

[25]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[26]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[27]  Salvador E. Venegas-Andraca,et al.  Processing images in entangled quantum systems , 2010, Quantum Inf. Process..

[28]  Martin Rötteler,et al.  Quantum Algorithms: Applicable Algebra and Quantum Physics , 2001 .

[29]  Alex S. Clark,et al.  All-optical-fiber polarization-based quantum logic gate , 2009 .