A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation

The investigation of the impact of the vanishing of the phase-lag and its first and second derivatives on the efficiency of a four-step Runge–Kutta type method of sixth algebraic order is presented in this paper. Based on the above mentioned investigation, a Runge–Kutta type of two level four-step method of sixth algebraic order is produced. The error and the stability of the new obtained method are also studied in the present paper. The obtained new method is applied to the resonance problem of the Schrödinger equation the efficiency of the method to be examined.

[1]  I. Alolyan,et al.  A new four-step hybrid type method with vanished phase-lag and its first derivatives for each level for the approximate integration of the Schrödinger equation , 2013, Journal of Mathematical Chemistry.

[2]  Georgios Psihoyios,et al.  Trigonometrically fitted predictor: corrector methods for IVPs with oscillating solutions , 2003 .

[3]  Theodore E. Simos,et al.  New modified Runge-Kutta-Nyström methods for the numerical integration of the Schrödinger equation , 2010, Comput. Math. Appl..

[4]  Theodore E. Simos,et al.  Closed Newton-Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems , 2009, Appl. Math. Lett..

[5]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[6]  Ch. Tsitouras,et al.  Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .

[7]  T. E. Simos New open modified Newton Cotes type formulae as multilayer symplectic integrators , 2013 .

[8]  M H Chawla,et al.  A Noumerov-type method with minimal phase-lag for the integration of second order periodic initial-value , 1986 .

[9]  S. Tremaine,et al.  Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .

[10]  Zacharias A. Anastassi,et al.  An optimized Runge-Kutta method for the solution of orbital problems , 2005 .

[11]  T. E. Simos,et al.  New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: Construction and theoretical analysis , 2012, Journal of Mathematical Chemistry.

[12]  Theodore E. Simos,et al.  Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems , 2007, Comput. Phys. Commun..

[13]  A. C. Allison,et al.  Exponential-fitting methods for the numerical solution of the schrodinger equation , 1978 .

[14]  Radojka Vujasin,et al.  A Comparison of Various Variational Approaches for Solving the One- dimensional Vibrational Schrödinger Equation , 2010 .

[15]  T. Simos A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation , 2000 .

[16]  Runge-Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics , 2003 .

[17]  M. M. Chawla,et al.  An explicit sixth-order method with phase-lag of order eight for y ″= f ( t , y ) , 1987 .

[18]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[19]  T. E. Simos,et al.  Family of Twelve Steps Exponential Fitting Symmetric Multistep Methods for the Numerical Solution of the Schrödinger Equation , 2002 .

[20]  T. Monovasilis,et al.  Symplectic integrators for the numerical solution of the Schrödinger equation , 2003 .

[21]  T. Simos,et al.  Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions , 2008, 0811.2470.

[22]  Tom E. Simos,et al.  A finite-difference method for the numerical solution of the Schro¨dinger equation , 1997 .

[23]  Theodore E. Simos,et al.  Exponentially Fitted Symplectic Runge-Kutta-Nystr om methods , 2013 .

[24]  New closed Newton-Cotes type formulae as multilayer symplectic integrators. , 2010, The Journal of chemical physics.

[25]  S. Stavroyiannis,et al.  A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems , 2010, Comput. Phys. Commun..

[26]  K. Tselios,et al.  Symplectic Methods of Fifth Order for the Numerical Solution of the Radial Shrödinger Equation , 2004 .

[27]  Hans Van de Vyver Phase-fitted and amplification-fitted two-step hybrid methods for y˝= f ( x,y ) , 2007 .

[28]  T. Simos Exponentially and Trigonometrically Fitted Methods for the Solution of the Schrödinger Equation , 2010 .

[29]  Georgios Psihoyios,et al.  A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions , 2005 .

[30]  T. E. Simos,et al.  A NEW EIGHT-STEP SYMMETRIC EMBEDDED PREDICTOR-CORRECTOR METHOD (EPCM) FOR ORBITAL PROBLEMS AND RELATED IVPs WITH OSCILLATORY SOLUTIONS , 2013 .

[31]  T. E. Simos Closed Newton-Cotes Trigonometrically-Fitted Formulae for the Solution of the Schrodinger Equation , 2008 .

[32]  Theodore E. Simos,et al.  A symmetric eight-step predictor-corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions , 2011, Comput. Phys. Commun..

[33]  T. Simos,et al.  A NEW SYMMETRIC EIGHT-STEP PREDICTOR-CORRECTOR METHOD FOR THE NUMERICAL SOLUTION OF THE RADIAL SCHRÖDINGER EQUATION AND RELATED ORBITAL PROBLEMS , 2011 .

[34]  T. E. Simos,et al.  A Family of Trigonometrically-Fitted Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems , 2003 .

[35]  T. E. Simos New Stable Closed Newton-Cotes Trigonometrically Fitted Formulae for Long-Time Integration , 2012 .

[36]  T. E. Simos A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation , 2011 .

[37]  Theodore E. Simos,et al.  High order closed Newton-Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation , 2009, Appl. Math. Comput..

[38]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .

[39]  T. Monovasilis,et al.  New Second-order Exponentially and Trigonometrically Fitted Symplectic Integrators for the Numerical Solution of the Time-independent Schrödinger Equation , 2007 .

[40]  D. P. Sakas,et al.  A family of multiderivative methods for the numerical solution of the Schrödinger equation , 2005 .

[41]  Theodore E. Simos,et al.  Zero Dissipative, Explicit Numerov-Type Methods for Second Order IVPs with Oscillating Solutions , 2003, Numerical Algorithms.

[42]  T. E. Simos,et al.  A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation , 2003 .

[43]  A New Optimized Symmetric Embedded Predictor- Corrector Method (EPCM) for Initial-Value Problems with Oscillatory Solutions , 2014 .

[44]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method , 2001 .

[45]  Zacharoula Kalogiratou,et al.  Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge Kutta methods , 2008 .

[46]  M. Rizea,et al.  Comparison of some four-step methods for the numerical solution of the Schrödinger equation , 1985 .

[47]  Accurately Closed Newton–Cotes Trigonometrically-Fitted Formulae For The Numerical Solution Of The Schrödinger Equation , 2013 .

[48]  T. E. Simos,et al.  A four-step exponentially fitted method for the numerical solution of the Schrödinger equation , 2006 .

[49]  T. E. Simos,et al.  Closed Newton–Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation , 2008 .

[50]  T. E. Simos,et al.  a New Methodology for the Construction of Optimized RUNGE-KUTTA-NYSTRÖM Methods , 2011 .

[51]  T. E. Simos,et al.  Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs , 2009 .

[52]  A. Konguetsof A new two-step hybrid method for the numerical solution of the Schrödinger equation , 2010 .

[53]  T. E. Simos,et al.  New P-Stable Eighth Algebraic Order Exponentially-Fitted Methods for the Numerical Integration of the Schrödinger Equation , 2002 .

[54]  M. M. Chawla,et al.  phase-lag for the integration of second order periodic initial-value problems. II: Explicit method , 1986 .

[55]  Tom E. Simos,et al.  Symplectic methods for the numerical integration of the Schrödinger equation , 2007 .

[56]  D. P. Sakas,et al.  Multiderivative methods of eighth algebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation , 2005 .

[57]  Zacharias A. Anastassi,et al.  A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation , 2007 .

[58]  Zacharias A. Anastassi,et al.  Numerical multistep methods for the efficient solution of quantum mechanics and related problems , 2009 .

[59]  Theodore E. Simos,et al.  Symplectic Partitioned Runge-Kutta methods with minimal phase-lag , 2010, Comput. Phys. Commun..

[60]  Theodore E. Simos,et al.  On Finite Difference Methods for the Solution of the Schrödinger Equation , 1999, Comput. Chem..

[61]  T. Simos,et al.  Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation , 2005 .

[62]  Theodore E. Simos High-order closed Newton-Cotes trigonometrically-fitted formulae for long-time integration of orbital problems , 2008, Comput. Phys. Commun..

[63]  Theodore E. Simos Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution , 2004, Appl. Math. Lett..

[65]  Chen Tang,et al.  High-order predictor-corrector of exponential fitting for the N-body problems , 2006, J. Comput. Phys..

[66]  T. E. Simos,et al.  High order four-step hybrid method with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation , 2013, Journal of Mathematical Chemistry.

[67]  Zacharoula Kalogiratou,et al.  Construction of Trigonometrically and Exponentially Fitted Runge–Kutta–Nyström Methods for the Numerical Solution of the Schrödinger Equation and Related Problems – a Method of 8th Algebraic Order , 2002 .

[68]  T. Simos,et al.  The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor–Corrector methods , 2006 .

[69]  A. Messiah Quantum Mechanics , 1961 .

[70]  A. A. Kosti,et al.  An optimized explicit Runge-Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems , 2009 .

[71]  CLOSED NEWTON–COTES TRIGONOMETRICALLY-FITTED FORMULAE FOR LONG-TIME INTEGRATION , 2003 .

[72]  Zhongcheng Wang P-stable linear symmetric multistep methods for periodic initial-value problems , 2005, Comput. Phys. Commun..

[73]  T. E. Simos,et al.  A Modified Runge-Kutta-Nystr¨ om Method by using Phase Lag Properties for the Numerical Solution of Orbital Problems , 2013 .

[74]  T. E. Simos,et al.  High order closed Newton-Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation , 2012, Journal of Mathematical Chemistry.

[75]  Jesús Vigo-Aguiar,et al.  Review of multistep methods for the numerical solution of the radial Schrödinger equation , 2005 .

[76]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 2. Development of the Generator, Optimization of the Generator and Numerical Results , 2001 .

[77]  Theodore E. Simos,et al.  On modified Runge-Kutta trees and methods , 2011, Comput. Math. Appl..

[78]  Zacharoula Kalogiratou,et al.  Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2003 .

[79]  Theodore E. Simos,et al.  A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems , 2012, J. Comput. Appl. Math..

[80]  T. E. Simos,et al.  A Fifth‐order Symplectic Trigonometrically Fitted Partitioned Runge‐Kutta Method , 2007 .

[81]  G. Berghe,et al.  Exponentially fitted open Newton-Cotes differential methods as multilayer symplectic integrators. , 2010 .

[82]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[83]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[84]  K. Tselios,et al.  Symplectic Methods for the Numerical Solution of the Radial Shrödinger Equation , 2003 .

[85]  T. Simos,et al.  A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution , 2009 .

[86]  An Optimized Symmetric 8-Step Semi-Embedded Predictor-Corrector Method for IVPs with Oscillating Solutions , 2013 .

[87]  Theodore E. Simos Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag , 2011 .

[88]  Z. Kalogiratou,et al.  Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2006 .

[89]  Zacharoula Kalogiratou,et al.  Exponentially fitted symplectic Runge-Kutta-Nyström methods , 2012 .

[90]  Zacharoula Kalogiratou,et al.  Newton--Cotes formulae for long-time integration , 2003 .

[91]  T. E. Simos,et al.  A new Numerov-type method for the numerical solution of the Schrödinger equation , 2009 .

[92]  Moawwad E. A. El-Mikkawy,et al.  Families of Runge-Kutta-Nystrom Formulae , 1987 .

[93]  Tom E. Simos A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation , 2001 .

[94]  T. E. Simos,et al.  Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation , 2004 .

[95]  Hans Van de Vyver,et al.  An explicit Numerov-type method for second-order differential equations with oscillating solutions , 2007, Comput. Math. Appl..

[96]  Theodore E. Simos Optimizing a Hybrid Two-Step Method for the Numerical Solution of the Schrödinger Equation and Related Problems with Respect to Phase-Lag , 2012, J. Appl. Math..

[97]  OPTIMIZED FIFTH ORDER SYMPLECTIC INTEGRATORS FOR ORBITAL PROBLEMS , 2013 .

[98]  Theodore E. Simos,et al.  Exponentially-fitted Runge-Kutta-Nystro"m method for the numerical solution of initial-value problems with oscillating solutions , 2002, Appl. Math. Lett..

[99]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[100]  T. Simos A family of four-step trigonometrically-fitted methods and its application to the schrödinger equation , 2008 .

[101]  J. Lambert,et al.  Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .

[102]  Xinyuan Wu,et al.  A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems , 2007, Appl. Math. Comput..