Geometry of abstraction in quantum computation

Quantum algorithms are sequences of abstract operations, per­ formed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contribu­ tions of Abramsky, Goecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its clas­ sical interfaces. Intuitively, classical data can be recognized as just those data that can be manipulated using variables, i.e. copied, deleted, and abstracted over. A categorical framework of polynomial extensions provides a convenient language for specifying quantum algorithms, with a clearly distinguished clas­ sical fragment, familiar from functional programming. As a running example, we reconstruct Simon's algorithm, which is a sim­ ple predecessor of Shor's quantum algorithms for factoring and discrete loga­ rithms. The abstract specification in the framework of polynomial categories displays some of the fundamental program transformations involved in devel­ oping quantum algorithms, and points to the computational resources, whether quantum or classical, which are necessary for the various parts of the execution. The relevant resources are characterized as categorical structures. They are normally supported by the standard Hilbert space model of quantum mechan­ ics, but in some cases they can also be found in other, nonstandard models. We conclude the paper by sketching an implementation of Simon's algorithm using just abelian groups and relations.

[1]  Louis H. Kauffman,et al.  Quantum Hidden Subgroup Algorithms: an Algorithmic Toolkit , 2008 .

[2]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[3]  S. Abramsky No-Cloning In Categorical Quantum Mechanics , 2009, 0910.2401.

[4]  S. Braunstein,et al.  Impossibility of deleting an unknown quantum state , 2000, Nature.

[5]  Rajagopal Nagarajan,et al.  Interaction categories and the foundations of typed concurrent programming , 1996, NATO ASI DPD.

[6]  Kraus Complementary observables and uncertainty relations. , 1987, Physical review. D, Particles and fields.

[7]  Dominic R. Verity,et al.  Traced monoidal categories , 1996, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  P. T. Johnstone,et al.  TOPOSES, TRIPLES AND THEORIES (Grundlehren der mathematischen Wissenschaften 278) , 1986 .

[9]  Martín Hötzel Escardó,et al.  Calculus in coinductive form , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[10]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[11]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[12]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[13]  D. Dieks Communication by EPR devices , 1982 .

[14]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[15]  W. Wootters Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.

[16]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[17]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[18]  F. William Lawvere,et al.  Adjointness in Foundations , 1969 .

[19]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[20]  F. William Lawvere,et al.  Ordinal sums and equational doctrines , 1969 .

[21]  J. Lambek From types to sets , 1980 .

[22]  R. Penrose STRUCTURE OF SPACE--TIME. , 1968 .

[23]  D. V. Widder,et al.  An introduction to transform theory , 1971 .

[24]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, LICS 2004.

[25]  Edmund Robinson,et al.  Premonoidal categories and notions of computation , 1997, Mathematical Structures in Computer Science.

[26]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[27]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[28]  Du Sko Pavlovi,et al.  Categorical Logic of Names and Abstraction in Action Calculi , 1993 .

[29]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[30]  E. Andrade Contemporary Physics , 1945, Nature.

[31]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[32]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[33]  Samson Abramsky,et al.  H*-algebras and nonunital Frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics , 2010, 1011.6123.

[34]  Samson Abramsky,et al.  A Structural Approach to Reversible Computation , 2005, Theor. Comput. Sci..

[35]  Peter Selinger,et al.  Idempotents in Dagger Categories: (Extended Abstract) , 2008, QPL.

[36]  S. Kleene Recursive predicates and quantifiers , 1943 .

[37]  A. Carboni,et al.  Matrices, relations, and group representations , 1991 .

[38]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[39]  Dusko Pavlovic Categorical logic of Names and Abstraction in Action Calculi , 1997, Math. Struct. Comput. Sci..

[40]  Thomas A. O. Fox Coalgebras and cartesian categories , 1976 .

[41]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[42]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[43]  Sean Hallgren,et al.  Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem , 2002, STOC '02.

[44]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[45]  Bill Edwards,et al.  Toy quantum categories , 2008, 0808.1037.

[46]  S. Lane Categories for the Working Mathematician , 1971 .

[47]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[48]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[49]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[50]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[51]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[52]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[53]  Michael Barr,et al.  Algebraically compact functors , 1992 .

[54]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[55]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[56]  Philip J. Scott,et al.  Towards a typed Geometry of Interaction , 2005, Mathematical Structures in Computer Science.

[57]  Dusko Pavlovic,et al.  Quantum measurements without sums , 2007 .