The direct effect of aerosols on solar radiation over the broader Mediterranean basin

Abstract. For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000–2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction – National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000–2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = −2.4 W m−2). Although a planetary cooling is found over most of the region, of up to −7 W m−2, large positive DRETOA values (up to +25 W m−2) are found over North Africa, indicating a strong planetary warming, and a weaker warming over the Alps (+0.5 W m−2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 W m−2) and to decrease SSR (DREsurf = −16.5 W m−2 and DREnetsurf−13.5 W m−2) inducing thus significant atmospheric warming and surface radiative cooling. The calculated seasonal and monthly DREs are even larger, reaching −25.4 W m−2 (for DREsurf). Within the range of observed natural or anthropogenic variability of aerosol optical properties, AOD seems to be the main responsible parameter for modifications of regional aerosol radiative effects, which are found to be quasi-linearly dependent on AOD, ωaer and gaer.

[1]  J. Lelieveld,et al.  Global Air Pollution Crossroads over the Mediterranean , 2002, Science.

[2]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[3]  O. Torres,et al.  Natural versus anthropogenic aerosols in the eastern Mediterranean basin derived from multiyear TOMS and MODIS satellite data , 2009 .

[4]  A. Ohmura,et al.  The Global Energy Balance Archive , 1999 .

[5]  Michael Schulz,et al.  Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations , 2006 .

[6]  F. Giorgi,et al.  Modeling of Saharan dust outbreaks over the Mediterranean by RegCM3: case studies , 2009 .

[7]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[8]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[9]  C. Moulin,et al.  Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000) , 2004 .

[10]  P. Bousquet,et al.  Tropospheric aerosol ionic composition in the Eastern Mediterranean region , 1997 .

[11]  G. Shaw Arctic air pollution , 1988 .

[12]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  M. G. Morgan,et al.  Elicitation of Expert Judgments of Aerosol Forcing , 2006 .

[14]  A. Stohl,et al.  Arctic Air Pollution: Origins and Impacts , 2007, Science.

[15]  K. Trenberth,et al.  Earth's annual global mean energy budget , 1997 .

[16]  R. Betts,et al.  Changes in Atmospheric Constituents and in Radiative Forcing. Chapter 2 , 2007 .

[17]  Yoram J. Kaufman,et al.  Satellite‐based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud‐free oceans , 2006 .

[18]  E. P. Shettle,et al.  The Transfer of Solar Irradiance Through Inhomogeneous Turbid Atmospheres Evaluated by Eddington's Approximation , 1970 .

[19]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[20]  V. Ramanathan,et al.  Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations , 2005 .

[21]  Christine Wiedinmyer,et al.  Wildfire particulate matter in Europe during summer 2003: meso-scale modeling of smoke emissions, transport and radiative effects , 2007 .

[22]  Maria João Costa,et al.  Direct SW aerosol radiative forcing over Portugal , 2008 .

[23]  J. Burrows,et al.  Megacities as hot spots of air pollution in the East Mediterranean , 2011 .

[24]  Timothy S. Bates,et al.  Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS , 2005 .

[25]  N. Mihalopoulos,et al.  Seasonal variability of optical properties of aerosols in the Eastern Mediterranean , 2005 .

[26]  V. Masson,et al.  Satellite climatology of African dust transport in the Mediterranean atmosphere , 1998 .

[27]  W. Collins,et al.  The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation , 2001 .

[28]  K. Carder,et al.  Columnar aerosol single‐scattering albedo and phase function retrieved from sky radiance over the ocean: Measurements of Saharan dust , 2003 .

[29]  Yoram J. Kaufman,et al.  An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors , 2008 .

[30]  F. Monteleone,et al.  Surface shortwave radiative forcing of different aerosol types in the central Mediterranean , 2008 .

[31]  I. Vardavas,et al.  Aerosol Shortwave Direct Radiative Effect and Forcing Based on MODIS Level 2 Data in the Eastern Mediterranean (Crete) , 2011 .

[32]  A. Bais,et al.  Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET , 2003 .

[33]  I. Vardavas,et al.  Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies , 2004 .

[34]  John H. Seinfeld,et al.  Global radiative forcing of coupled tropospheric ozone and aerosols in a unified general circulation model , 2004 .

[35]  D. Hatzidimitriou,et al.  Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere , 2004, Atmospheric Chemistry and Physics.

[36]  A. Alcantara,et al.  Atmospheric aerosols during the 2003 heat wave in southeastern Spain I: Spectral optical depth , 2006 .

[37]  J. Haywood,et al.  Multi‐spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model , 1997 .

[38]  J. Joseph,et al.  Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index , 2002 .

[39]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[40]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[41]  Gionata Biavati,et al.  Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999-2005 , 2007 .

[42]  D. Meloni,et al.  Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground‐based and spaceborne observations and dependence on the aerosol type and single scattering albedo , 2010 .

[43]  P. Koepke,et al.  Scattering functions of tropospheric aerosols: the effects of nonspherical particles. , 1988, Applied optics.

[44]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[45]  C. Moulin,et al.  Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime , 2002 .

[46]  Mihalis Vrekoussis,et al.  Origin and variability of particulate matter (PM10) mass concentrations over the Eastern Mediterranean , 2006 .

[47]  J. Coakley,et al.  Climate Forcing by Anthropogenic Aerosols , 1992, Science.

[48]  J. Hansen,et al.  Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment , 2005 .

[49]  Giorgio Fiocco,et al.  Tropospheric aerosols in the Mediterranean: 2. Radiative effects through model simulations and measurements , 2003 .

[50]  J. Joseph,et al.  The delta-Eddington approximation for radiative flux transfer , 1976 .

[51]  Mihalis Vrekoussis,et al.  Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements , 2007 .

[52]  Masanori Yabuki,et al.  Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study , 2005 .

[53]  C. C. Chuang,et al.  Climate forcing by carbonaceous and sulfate aerosols , 1998 .

[54]  Jean-Claude Roger,et al.  One year measurements of aerosol optical properties over an urban coastal site: Effect on local direct radiative forcing , 2008 .

[55]  B. Holben,et al.  Validation of MODIS aerosol retrieval over ocean , 2002 .

[56]  M. Perrone,et al.  Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean based on AERONET aerosol properties , 2008 .

[57]  M. Viana,et al.  Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe , 2008 .

[58]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[59]  Jens Debernard,et al.  Response of the climate system to aerosol direct and indirect forcing: Role of cloud feedbacks , 2005 .

[60]  Richard C. Willson,et al.  Total Solar Irradiance Trend During Solar Cycles 21 and 22 , 1997 .

[61]  E. Vermote,et al.  A synergetic approach for estimating the local direct aerosol forcing : Application to an urban zone during the Expérience sur site pour contraindre les Modèles de pollution et de transport d'Emission (ESCOMPTE) experiment , 2006 .

[62]  P. Koepke,et al.  The direct effect of aerosols on solar radiation based on satellite observations, reanalysis datasets, and spectral aerosol optical properties from Global Aerosol Data Set (GADS) , 2007 .

[63]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[64]  P. Formenti,et al.  Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum , 2003 .

[65]  Yoram J. Kaufman,et al.  An “A-Train” Strategy for Quantifying Direct Climate Forcing by Anthropogenic Aerosols , 2005 .

[66]  G. Kallos,et al.  African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin , 2009 .

[67]  W. Rossow,et al.  International satellite cloud climatology project (ISCCP): cd documentation , 2003 .

[68]  Paul W. Stackhouse,et al.  Modelling the direct effect of aerosols in the solar near-infrared on a planetary scale , 2006 .

[69]  J. Feichter,et al.  Effect of black carbon and sulfate aerosols on the Global Radiation Budget , 1997 .

[70]  J. Penner,et al.  Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols , 1994 .

[71]  I. Vardavas,et al.  A model for the longwave radiation budget of the northern hemisphere: Comparison with Earth Radiation Budget Experiment data , 1995 .

[72]  A. Bais,et al.  Aerosol forcing efficiency in the UVA region from spectral solar irradiance measurements at an urban environment , 2009 .

[73]  Jean-Jacques Morcrette,et al.  The Surface Downward Longwave Radiation in the ECMWF Forecast System , 2002 .

[74]  Davide Meloni,et al.  Mediterranean aerosol radiative forcing and influence of the single scattering albedo , 2009 .

[75]  O. Edenhofer,et al.  Mitigation from a cross-sectoral perspective , 2007 .

[76]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[77]  G. Myhre,et al.  Estimation of the direct radiative forcing due to sulfate and soot aerosols , 1998 .

[78]  G. Gobbi,et al.  Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001 , 2004 .

[79]  Xavier Querol,et al.  Spatial and temporal variability in aerosol properties over the Mediterranean basin based on 6-year (2000-2006) MODIS data , 2008 .

[80]  S. Christopher,et al.  Short-wave aerosol radiative efficiency over the global oceans derived from satellite data , 2008 .

[81]  Despina Hatzidimitriou,et al.  Global distribution of Earth's surface shortwave radiation budget , 2005, Atmospheric Chemistry and Physics.

[82]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[83]  Daniela Meloni,et al.  Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types , 2005 .

[84]  V. Ramaswamy,et al.  Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols , 1998 .

[85]  Michael Schulz,et al.  Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Météorologie Dynamique general circulation model , 2005 .

[86]  Natividad Manalo-Smith,et al.  Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations , 2005 .

[87]  A. Herber,et al.  A case study of the radiative effects of Arctic aerosols in March 2000 , 2005 .

[88]  F. Taylor,et al.  Radiation and climate , 2007 .

[89]  I. Vardavas,et al.  Solar and terrestrial parameterizations for radiative-convective models , 1984 .

[90]  C. Spyrou,et al.  Long-range transport of anthropogenically and naturally produced particulate matter in the mediterranean and North Atlantic : Current state of knowledge , 2007 .

[91]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[92]  Martin Wild,et al.  Validation of general circulation model radiative fluxes using surface observations , 1995 .

[93]  Martin Wild,et al.  Global dimming and brightening: A review , 2009 .

[94]  I. Vardavas,et al.  Shortwave radiation budget of the northern hemisphere using International Satellite Cloud Climatology Project and NCEP/NCAR climatological data , 1999 .

[95]  B. Holben,et al.  Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model , 2002 .

[96]  D. Tanré,et al.  Remote Sensing of Tropospheric Aerosols from Space: Past, Present, and Future. , 1999 .

[97]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[98]  Brian Cairns,et al.  Long-Term Satellite Record Reveals Likely Recent Aerosol Trend , 2007, Science.

[99]  I. Vardavas,et al.  Assessment of the MODIS Collections C005 and C004 aerosol optical depth products over the Mediterranean basin , 2008 .

[100]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[101]  J. Blanchet,et al.  Evaluation of the direct and indirect radiative and climate effects of aerosols over the western Arctic , 2005 .

[102]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[103]  Sensitivity analysis of aerosol direct radiative forcing in ultraviolet—visible wavelengths and consequences for the heat budget , 2004 .

[104]  K. Dethloff,et al.  Regional climate effects of Arctic Haze , 2004 .

[105]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[106]  I. Vardavas,et al.  Radiation and climate : atmospheric energy budget from satellite remote sensing , 2011 .

[107]  J. Bösenberg,et al.  EARLINET: A European Aerosol Research Lidar Network to Establish an Aerosol Climatology , 2003 .

[108]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[109]  M. Wendisch,et al.  STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea: 1. Aerosol particles and trace gases , 2002 .

[110]  F. Monteleone,et al.  Seasonal evolution of the tropospheric aerosol vertical profile in the central Mediterranean and role of desert dust , 2009 .

[111]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[112]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[113]  I. Vardavas,et al.  Shortwave Radiation Budget of the Southern Hemisphere Using ISCCP C2 and NCEP–NCAR Climatological Data , 2001 .

[114]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[115]  P. Crutzen,et al.  Absorbing mediterranean aerosols lead to a large reduction in the solar radiation at the surface , 2002 .

[116]  Charles Ichoku,et al.  Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans , 2010 .

[117]  G. Fiocco,et al.  Saharan dust profiles measured by lidar at Lampedusa , 2001 .