Non-commutative hyper residuated lattices and hyper pseudo-BCK algebras

The new notion of non-commutative hyper residuated lattice is introduced and some properties are investigated. Moreover, two definitions of hyper pseudo-BCK algebras are discussed, and the following result is proved: every strong non-commuatative hyper residuated lattice can induce a weak hyper pseudo-BCK algebra. Finally, some mistakes in literatures are pointed out.

[1]  R. Borzooei,et al.  Hyper Pseudo BCK-Algebras with Conditions ( ) S and ( ) P , 2014 .

[2]  Jianming Zhan,et al.  On properties of fuzzy hyperideals in hypernear-rings with t-Norms , 2006 .

[3]  George Georgescu,et al.  Pseudo-BCK Algebras: An Extension of BCK Algebras , 2001, DMTCS.

[4]  X. Xin HYPER BCI-ALGEBRAS , 2006 .

[5]  Rajab Ali Borzooei,et al.  ON HYPER K-ALGEBRA , 2000 .

[6]  Jianming Zhan,et al.  A new rough set theory: rough soft hemirings , 2015, J. Intell. Fuzzy Syst..

[7]  Bijan Davvaz,et al.  Fuzzy Algebraic Hyperstructures - An Introduction , 2015, Studies in Fuzziness and Soft Computing.

[8]  Y. Jun,et al.  On hyper BCK-algebras , 2000 .

[9]  Afrodita Iorgulescu Classes of pseudo-BCK algebras - Part II , 2006, J. Multiple Valued Log. Soft Comput..

[10]  Young Bae Jun,et al.  On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups , 2005, Inf. Sci..

[12]  Arsham Borumand Saeid,et al.  Smarandache hyper BCC-algebra , 2011, Comput. Math. Appl..

[13]  P. Corsini,et al.  Applications of Hyperstructure Theory , 2010 .

[14]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[15]  R. Borzooei,et al.  On Hyper Pseudo BCK-algebras , 2014 .

[16]  D. Pei Fuzzy Logic Algebras on Residuated Lattices , 2004 .

[17]  Wieslaw A. Dudek,et al.  On hyper BCC-algebras , 2006, Int. J. Math. Math. Sci..

[18]  Xiao-hong Zhang,et al.  On pseudo-BL algebras and BCC-algebras , 2006, Soft Comput..

[19]  A. Borumand Saeid,et al.  Hyper MV-Algebras Defined by Bipolar-valued Fuzzy Sets , 2012 .

[20]  Afrodita Iorgulescu,et al.  Classes of Pseudo-BCK algebras -Part I , 2006, J. Multiple Valued Log. Soft Comput..

[21]  F. Marty Sur une generalization de la notion de groupe , 1934 .

[22]  Petr Hájek,et al.  Handbook of mathematical fuzzy logic , 2011 .

[23]  Habib Harizavi,et al.  QUOTIENT HYPER PSEUDO BCK-ALGEBRAS , 2013 .

[24]  Zhang Xiao-hong Fuzzy BIK~+-logic and Non-commutative Fuzzy Logics , 2009 .

[25]  Xiaohong Zhang BCC-algebras and residuated partially-ordered groupoid , 2013 .

[26]  Young Bae Jun,et al.  New types of hyper MV‐deductive systems in hyper MV‐algebras , 2010, Math. Log. Q..

[27]  L. Hongxing,et al.  Granular Computing Theory Based on Hypergroups , 2011 .

[28]  R. Borzooei,et al.  Classications of Hyper Pseudo BCK-algebras of Order 3 , 2012 .

[29]  Petr Hájek Observations on non-commutative fuzzy logic , 2003, Soft Comput..

[30]  Mohammad Mehdi Zahedi,et al.  ON HYPERK-ALGEBRAS , 2000 .

[31]  R. Borzooei,et al.  Filter theory on hyper residuated lattices , 2014 .

[32]  Xiaohong Zhang,et al.  IMTL(MV)-filters and fuzzy IMTL(MV)-filters of residuated lattices , 2014, J. Intell. Fuzzy Syst..

[33]  Xilin Tang,et al.  Ordered regular equivalence relations on ordered semihypergroups , 2016 .

[34]  Jianming Zhan,et al.  Approximations in hyperquasigroups , 2006 .

[35]  Xiaohong Zhang Fuzzy 1-type and 2-type positive implicative filters of pseudo-BCK algebras , 2015, J. Intell. Fuzzy Syst..