A curse-of-dimensionality-free numerical method for a class of HJB PDE's

Abstract Max-plus methods have been explored for solution of first-order, nonlinear Hamilton-Jacobi-Bellman partial differential equations (HJB PDEs) and corresponding nonlinear control problems. These methods exploit the max-plus linearity of the associated semigroups. Although these methods provide advantages, they still suffer from the curse-of-dimensionality. Here we consider HJB PDEs where the Hamiltonian takes the form of a (pointwise) maximum of linear/quadratic forms. We obtain a numerical method not subject to the curse-of-dimensionality. The method is based on construction of the dual-space semigroup corresponding to the HJB PDE. This dual-space semigroup is constructed from the dual-space semigroups corresponding to the constituent Hamiltonians.

[1]  William M. McEneaney,et al.  A Max-Plus-Based Algorithm for a Hamilton--Jacobi--Bellman Equation of Nonlinear Filtering , 2000, SIAM J. Control. Optim..

[2]  C. Leake Synchronization and Linearity: An Algebra for Discrete Event Systems , 1994 .

[3]  Виктор Павлович Маслов,et al.  Идемпотентный функциональный анализ. Алгебраический подход@@@Idempotent Functional Analysis: An Algebraic Approach , 2001 .

[4]  V. Kolokoltsov,et al.  Idempotent Analysis and Its Applications , 1997 .

[5]  J. Quadrat,et al.  Duality and separation theorems in idempotent semimodules , 2002, math/0212294.

[6]  John Rust Using Randomization to Break the Curse of Dimensionality , 1997 .

[7]  Pierpaolo Soravia ${\cal H}_\infty$ Control of Nonlinear Systems: Differential Games and Viscosity Solutions , 1996 .

[8]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[9]  V. Maslov On a new principle of superposition for optimization problems , 1987 .

[10]  Marianne Akian,et al.  A max-plus finite element method for solving finite horizon deterministic optimal control problems , 2004 .

[11]  William M. McEneaney,et al.  Max-plus eigenvector representations for solution of nonlinear H∞ problems: basic concepts , 2003, IEEE Trans. Autom. Control..

[12]  William M. McEneaney A uniqueness result for the isaacs equation corresponding to nonlinear H∞ control , 1998, Math. Control. Signals Syst..

[13]  Stéphane Gaubert,et al.  Duality of Idempotent Semimodules , 2001 .

[14]  William M. McEneaney,et al.  Max-Plus Eigenvector Methods for Nonlinear Hinfinity Problems: Error Analysis , 2004, SIAM J. Control. Optim..

[15]  P. Dupuis,et al.  Markov chain approximations for deterministic control problems with affine dynamics and quadratic cost in the control , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[16]  P. Dupuis,et al.  Markov Chain Approximations for Deterministic Control Problems with Affine Dynamics and Quadratic Cost in the Control , 1999 .