Motion paths and mechanical behavior of origami-inspired tunable structures

[1]  Robert J. Lang,et al.  A computational algorithm for origami design , 1996, SCG '96.

[2]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[3]  I. Ario,et al.  Non-linear dynamic behaviour of multi-folding microstructure systems based on origami skill , 2010 .

[4]  Levi H. Dudte,et al.  Geometric mechanics of periodic pleated origami. , 2012, Physical review letters.

[5]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[6]  Candace K. Chan,et al.  Origami lithium-ion batteries , 2014, Nature Communications.

[7]  Samuel M. Felton,et al.  A method for building self-folding machines , 2014, Science.

[8]  B. Chen,et al.  Origami multistability: from single vertices to metasheets. , 2014, Physical review letters.

[9]  Rui Peng,et al.  Origami of thick panels , 2015, Science.

[10]  Jinkyu Yang,et al.  Reentrant Origami-Based Metamaterials with Negative Poisson's Ratio and Bistability. , 2015, Physical review letters.

[11]  Cai Jianguo,et al.  Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern , 2015 .

[12]  Zhou Ya,et al.  Folding Behavior of a Foldable Prismatic Mast With Kresling Origami Pattern , 2016 .

[13]  Yi Min Xie,et al.  Energy absorption of thin-walled tubes with pre-folded origami patterns: Numerical simulation and experimental verification , 2016 .

[14]  Hongbin Fang,et al.  Self-locking degree-4 vertex origami structures , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Stavros V. Georgakopoulos,et al.  A Design of an Origami Reconfigurable QHA with a Foldable Reflector [Antenna Applications Corner] , 2017, IEEE Antennas and Propagation Magazine.

[16]  D. Fang,et al.  Origami by frontal photopolymerization , 2017, Science Advances.

[17]  Ichiro Hagiwara,et al.  Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures , 2017 .

[18]  A. Hart,et al.  Twist-coupled Kirigami cells and mechanisms , 2017 .

[19]  K. Bertoldi,et al.  Flexible mechanical metamaterials , 2017 .

[20]  Bo Wang,et al.  Quasi-Static Axial Compression of Origami Crash Boxes , 2017 .

[21]  S. Georgakopoulos,et al.  Morphing Origami Conical Spiral Antenna Based on the Nojima Wrap , 2017, IEEE Transactions on Antennas and Propagation.

[22]  Yue Chen,et al.  Fabricating biomedical origami: a state-of-the-art review , 2017, International Journal of Computer Assisted Radiology and Surgery.

[23]  Manos M. Tentzeris,et al.  Low-Cost Circularly Polarized Origami Antenna , 2017, IEEE Antennas and Wireless Propagation Letters.

[24]  Tomohiro Tachi,et al.  Origami-based tunable truss structures for non-volatile mechanical memory operation , 2016, Nature Communications.

[25]  K. Inamoto,et al.  Improved Feasible Load Range and Its Effect on the Frequency Response of Origami-Inspired Vibration Isolators With Quasi-Zero-Stiffness Characteristics1 , 2018, Journal of Vibration and Acoustics.

[26]  Glaucio H. Paulino,et al.  Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing , 2018, Proceedings of the National Academy of Sciences.

[27]  Kyu-Jin Cho,et al.  An origami-inspired, self-locking robotic arm that can be folded flat , 2018, Science Robotics.

[28]  Daniela Rus,et al.  Spotlight on origami robots , 2018, Science Robotics.

[29]  Daniela Rus,et al.  Design, fabrication and control of origami robots , 2018, Nature Reviews Materials.

[30]  Jamie Paik,et al.  Design Methodology for Constructing Multimaterial Origami Robots and Machines , 2018, IEEE Transactions on Robotics.

[31]  Yong Wang,et al.  Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness , 2018, Proceedings of the National Academy of Sciences.

[32]  Stavros V. Georgakopoulos,et al.  Origami Segmented Helical Antenna With Switchable Sense of Polarization , 2018, IEEE Access.

[33]  Michele Calvano,et al.  Algorithmic Design and Analysis of Architectural Origami , 2018 .

[34]  N. Fang,et al.  Mechanical Metamaterials and Their Engineering Applications , 2019, Advanced Engineering Materials.

[35]  Hutao Cui,et al.  A reconfiguration strategy for modular robots using origami folding , 2019, Int. J. Robotics Res..

[36]  Stavros V. Georgakopoulos,et al.  Analysis of a Packable and Tunable Origami Multi-Radii Helical Antenna , 2019, IEEE Access.

[37]  Minjie Wang,et al.  Study of collapsed deformation and energy absorption of polymeric origami-based tubes with viscoelasticity , 2019, Thin-Walled Structures.

[38]  Pooi See Lee,et al.  Reconfigurable and programmable origami dielectric elastomer actuators with 3D shape morphing and emissive architectures , 2019, NPG Asia Materials.

[39]  Christian D Santangelo,et al.  Theory and practice of origami in science. , 2019, Soft matter.

[40]  R. Masana,et al.  Equilibria and bifurcations of a foldable paper-based spring inspired by Kresling-pattern origami. , 2019, Physical review. E.

[41]  X. Niu,et al.  New network architectures with tunable mechanical properties inspired by origami , 2019 .

[42]  Jinkyu Yang,et al.  Origami-based impact mitigation via rarefaction solitary wave creation , 2018, Science Advances.

[43]  Kon-Well Wang,et al.  Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties , 2018, Advanced materials.

[44]  Bok Seng Yeow,et al.  Graphene Oxide-Enabled Synthesis of Metal Oxide Origamis for Soft Robotics. , 2019, ACS nano.

[45]  Suyi Li,et al.  Snap-through and stiffness adaptation of a multi-stable Kirigami composite module , 2019, Composites Science and Technology.

[46]  Tian Chen,et al.  Autonomous Deployment of a Solar Panel Using Elastic Origami and Distributed Shape-Memory-Polymer Actuators , 2018, Physical Review Applied.

[47]  Aimy Wissa,et al.  Model-based design of a multistable origami-enabled crawling robot , 2020 .

[48]  Z. You,et al.  Quasi-static impact of origami crash boxes with various profiles , 2019, Thin-Walled Structures.

[49]  Suyi Li,et al.  Peristaltic locomotion without digital controllers: Exploiting multi-stability in origami to coordinate robotic motion , 2019, Extreme Mechanics Letters.

[50]  Bo Wang,et al.  Energy absorption of thin-walled square tubes designed by kirigami approach , 2019, International Journal of Mechanical Sciences.

[51]  Y. Okabe,et al.  Design and fabrication of aluminum honeycomb structures based on origami technology , 2019 .

[52]  Amir A. Zadpoor,et al.  Kirigami-enabled self-folding origami , 2020, Materials Today.

[53]  Seokheun Choi,et al.  Paper Robotics: Self‐Folding, Gripping, and Locomotion , 2020, Advanced Materials Technologies.

[54]  H. Naguib,et al.  Novel origami-inspired metamaterials: Design, mechanical testing and finite element modelling , 2020 .

[55]  Zhen Li,et al.  Uncovering rotational multifunctionalities of coupled Kresling modular structures , 2020 .

[56]  Yan Chen,et al.  The behavior of a functionally graded origami structure subjected to quasi-static compression , 2020 .

[57]  Zhong You,et al.  Folding of Tubular Waterbomb , 2020, Research.

[58]  A. Senba,et al.  Self-Shape Generation of Membrane Structures Using Shape Memory Polymer Patches , 2020 .

[59]  Xia Liu,et al.  A highly-compressible, torsion-contraction coupling and self-transforming cylindrical bi-material metastructure , 2020, Smart Materials and Structures.