A geometrically-amplified in-plane piezoelectric actuator for mesoscale robotic systems

Piezoelectric materials are an attractive option for electromechanical transduction on the mesoscale due to their intrinsic high force production, large bandwidth, and favorable scaling characteristics. However, the small displacements they inherently produce are typically too small to be directly used in robotic systems, and thus displacement amplification is needed. Here we present a piezoelectric actuator that uses geometric amplification to achieve 20 × the nominal piezoelectric displacement. Actuator performance is described in terms of blocked force (20 mN), displacement (115 μm), bandwidth (3 kHz), and power density (172 W/kg). The actuator is fabricated using printed circuit MEMS, an emerging mesoscale manufacturing paradigm. Expected applications include locomotion for terrestrial crawling robots and flapping wing micro-air vehicles.

[1]  Takeshi Morita,et al.  Miniature piezoelectric motors , 2003 .

[2]  R. Horowitz,et al.  Design and fabrication of an angular microactuator for magnetic disk drives , 1998 .

[3]  Mihai Duduta,et al.  Multilayer Dielectric Elastomers for Fast, Programmable Actuation without Prestretch , 2016, Advanced materials.

[4]  Robert J. Wood,et al.  Monolithic fabrication of millimeter-scale machines , 2012 .

[5]  A. Dogan,et al.  FLEXTENSIONAL "MOONIE" ACTUATORS , 1993 .

[6]  Dominiek Reynaerts,et al.  Shape memory micro-actuation for a gastro-intestinal intervention system , 1999 .

[7]  Kyu-Jin Cho,et al.  Flea-Inspired Catapult Mechanism for Miniature Jumping Robots , 2012, IEEE Transactions on Robotics.

[8]  J. Pulskamp,et al.  Thin-Film PZT Lateral Actuators With Extended Stroke , 2008, Journal of Microelectromechanical Systems.

[9]  R.E. Newnham,et al.  Composite piezoelectric transducer with truncated conical endcaps "cymbal" , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Nam Seo Goo,et al.  Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators , 2004 .

[11]  L. E. Cross,et al.  Piezoelectric micromotors for microrobots , 1992 .

[12]  R. Wood,et al.  Design and manufacturing rules for maximizing the performance of polycrystalline piezoelectric bending actuators , 2015 .

[13]  D. A. Henderson Simple Ceramic Motor . . . Inspiring Smaller Products , 2006 .

[14]  S. Koganezawa,et al.  Dual-stage actuator system for magnetic disk drives using a shear mode piezoelectric microactuator , 1999 .

[15]  Hiroyuki Fujita,et al.  Fabrication and operation of polyimide bimorph actuators for a ciliary motion system , 1993 .

[16]  Quan Zhou,et al.  Voice coil based hopping mechanism for microrobot , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  Don L. DeVoe,et al.  Microfabrication of bulk PZT transducers by dry film photolithography and micro powder blasting , 2012 .

[18]  A. Safari,et al.  HIGH-DISPLACEMENT SPIRAL PIEZOELECTRIC ACTUATORS , 1999 .

[19]  R. Fearing,et al.  Optimal energy density piezoelectric bending actuators , 2005 .

[20]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[21]  J. P. Whitney,et al.  Pop-up book MEMS , 2011 .

[22]  H H Asada,et al.  Large Effective-Strain Piezoelectric Actuators Using Nested Cellular Architecture With Exponential Strain Amplification Mechanisms , 2010, IEEE/ASME Transactions on Mechatronics.

[23]  Sang-Gook Kim,et al.  Large-strain, piezoelectric, in-plane micro-actuator , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[24]  Robert J. Wood,et al.  Planar fabrication of a mesoscale voice coil actuator , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).