Data clustering using hybrid improved cuckoo search method

Data clustering is one of the prominent fields of data mining which detects natural groups in a dataset. For the high dimensional dataset, traditional methods generally do not perform efficiently to cluster the data. Therefore, this paper proposes a novel metaheuristic method for data clustering based on k-means and improved cuckoo search to extend the capabilities of traditional clustering methods. The effectiveness of proposed method is tested on the three microarray datasets. Experimen­tal results validate that the proposed method outperforms the existing methods.

[1]  K. alik An efficient k'-means clustering algorithm , 2008 .

[2]  Yongquan Zhou,et al.  A Novel Cuckoo Search Optimization Algorithm Base on Gauss Distribution , 2012 .

[3]  Akinori Okada,et al.  One-mode three-way overlapping cluster analysis , 2009, Comput. Stat..

[4]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[5]  Hae-Sang Park,et al.  A simple and fast algorithm for K-medoids clustering , 2009, Expert Syst. Appl..

[6]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[7]  Andries Petrus Engelbrecht,et al.  Data clustering using particle swarm optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[8]  Nadjet Kamel,et al.  A New Algorithm for Data Clustering Based on Cuckoo Search Optimization , 2013, ICGEC.

[9]  J. Tukey,et al.  Variations of Box Plots , 1978 .

[10]  P. Manikandan,et al.  Data Clustering Using Cuckoo Search Algorithm (CSA) , 2012, SocProS.

[11]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[12]  Erik K. Antonsson,et al.  Dynamic partitional clustering using evolution strategies , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[13]  P. Danielsson Euclidean distance mapping , 1980 .

[14]  Saeed Tavakoli,et al.  Improved Cuckoo Search Algorithm for Feed forward Neural Network Training , 2011 .

[15]  M. Sidman Tactics of Scientific Research , 1960 .

[16]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[17]  Ujjwal Maulik,et al.  Genetic algorithm-based clustering technique , 2000, Pattern Recognit..

[18]  Qing He,et al.  Parallel K-Means Clustering Based on MapReduce , 2009, CloudCom.

[19]  Ross Wilkinson,et al.  Using the cosine measure in a neural network for document retrieval , 1991, SIGIR '91.

[20]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[21]  Ilya Pavlyukevich Lévy flights, non-local search and simulated annealing , 2007, J. Comput. Phys..

[22]  Sanjay Ranka,et al.  An effic ient k-means clustering algorithm , 1997 .

[23]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[24]  D. B. Owen,et al.  The Power of Student's t-test , 1965 .