The Angle Between Subspaces of a Hilbert Space

This is a mainly expository paper concerning two different definitions of the angle between a pair of subspaces of a Hilbert space, certain basic results which hold for these angles, and a few of the many applications of these notions. The latter include the rate of convergence of the method of cyclic projections, existence and uniqueness of abstract splines, and the product of operators with closed range.

[1]  K. Friedrichs On certain inequalities and characteristic value problems for analytic functions and for functions of two variables , 1937 .

[2]  E. Lorch,et al.  On a calculus of operators in reflexive vector spaces , 1939 .

[3]  H. Kober A theorem on Banach spaces , 1940 .

[4]  J. Dixmier Étude sur les variétés et les opérateurs de Julia, avec quelques applications , 1949 .

[5]  John von Neumann,et al.  The geometry of orthogonal spaces , 1950 .

[6]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[7]  Sterling K. Berberian,et al.  Introduction to Hilbert Space , 1977 .

[8]  Tosio Kato Perturbation theory for linear operators , 1966 .

[9]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[10]  The product of operators with closed range , 1973 .

[11]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[12]  B. Shekhtman Unconditional convergence of abstract splines , 1980 .

[13]  Convergence of abstract splines , 1981 .

[14]  Saichi Izumino The product of operators with closed range and an extension of the reverse order law , 1982 .

[15]  F. Deutsch Rate of Convergence of the Method of Alternating Projections , 1984 .

[16]  Will Light,et al.  On the von Neumann alternating algorithm in Hilbert space , 1986 .

[17]  Howard L. Weinert,et al.  Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..

[18]  P. Mikusinski,et al.  Introduction to Hilbert spaces with applications , 1990 .

[19]  Sankatha Prasad Singh,et al.  Approximation Theory, Spline Functions and Applications , 1992 .

[20]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[21]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[22]  Heinz H. Bauschke,et al.  On the method of cyclic projections for convex sets in Hilbert space , 1994 .

[23]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..