On the existence of (v, 7, 1)-perfect Mendelsohn designs
暂无分享,去创建一个
[1] T. N. Dharmadhikari,et al. Golden jubilee volume , 1981 .
[2] L. Zhu. Six pairwise orthogonal latin squares of order 69 , 1984 .
[3] Jacobus Hendricus van Lint,et al. Combinatorial theory seminar, Eindhoven University of Technology , 1974 .
[4] Frank E. Bennett,et al. Resolvable Perfect Cyclic Designs , 1980, J. Comb. Theory, Ser. A.
[5] F. E. Bennett. Direct Constructions for Perfect 3-Cyclic Designs , 1982 .
[6] Andries E. Brouwer. A Series of Separable Designs with Application to Pairwise Orthogonal Latin Squares , 1980, Eur. J. Comb..
[7] D. F. Hsu,et al. GENERALIZED COMPLETE MAPPINGS, NEOFIELDS, SEQUENCEABLE GROUPS AND BLOCK DESIGNS. II , 1984 .
[8] Haim Hanani,et al. Balanced incomplete block designs and related designs , 1975, Discret. Math..
[9] N. S. Mendelsohn. Perfect cyclic designs , 1977, Discret. Math..
[10] Richard M. Wilson,et al. Constructions and Uses of Pairwise Balanced Designs , 1975 .
[11] Scott A. Vanstone,et al. On the existence of doubly resolvable Kirkman systems and equidistant permutation arrays , 1980, Discret. Math..
[12] Andries E. Brouwer,et al. The number of mutually orthogonal latin squares; a table up to order 10000 , 1979 .