W-Band Silicon-Based Frequency Synthesizers Using Injection-Locked and Harmonic Triplers

Two monolithically integrated W-band frequency synthesizers are presented. Implemented in a 0.18 μm SiGe BiCMOS with fT/fmax of 200/180 GHz, both circuits incorporate the same 30.3-33.8 GHz PLL core. One synthesizer uses an injection-locked frequency tripler (ILFT) with locking range of 92.8-98.1 GHz and the other employs a harmonic-based frequency tripler (HBFT) with 3-dB bandwidth of 10.5 GHz from 90.9-101.4 GHz, respectively. The measured RMS phase noise for ILFT- and HBFT-based synthesizers are 5.4° and 5.5° (100 kHz to 100 MHz integration), while phase noise at 1 MHz offset is -93 and -92 dBc/Hz, respectively, at 96 GHz from a reference frequency of 125 MHz. The measured reference spurs are <; -52 dBc for both prototypes. The combined power consumption from 1.8- and 2.5-V is 140 mW for both chips. The frequency synthesizer is suitable for integration in millimeter-wave (mm-wave) phased array and multi-pixel systems such as W-band radar/imaging and 120 GHz wireless communication.

[1]  J.R. Long,et al.  A 23-to-29 GHz Transconductor-Tuned VCO MMIC in 0.13 $\mu$m CMOS , 2007, IEEE Journal of Solid-State Circuits.

[2]  Mohamed A. Y. Abdulla,et al.  Distortion Analysis in Analog Integrated Circuits , 2002 .

[3]  F. Herzel,et al.  A fully integrated BiCMOS PLL for 60 GHz wireless applications , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[4]  R. Adler A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[5]  Zhiming Chen,et al.  W-band frequency synthesis using a Ka-band PLL and two different frequency triplers , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  Payam Heydari,et al.  A fully integrated 96GHz 2×2 focal-plane array with On-Chip antenna , 2011, 2011 IEEE Radio Frequency Integrated Circuits Symposium.

[7]  S.P. Voinigescu,et al.  The Invariance of Characteristic Current Densities in Nanoscale MOSFETs and Its Impact on Algorithmic Design Methodologies and Design Porting of Si(Ge) (Bi)CMOS High-Speed Building Blocks , 2006, IEEE Journal of Solid-State Circuits.

[8]  DefermNoël,et al.  Design, implementation and measurement of a 120 GHz 10 Gb/s phase-modulating transmitter in 65 nm LP CMOS , 2013 .

[9]  Stephen A. Maas,et al.  Microwave Mixers , 1986 .

[10]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[11]  B. Floyd,et al.  A silicon 60GHz receiver and transmitter chipset for broadband communications , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[12]  Mingquan Bao,et al.  A 21.5/43-GHz dual-frequency balanced Colpitts VCO in SiGe technology , 2004, IEEE Journal of Solid-State Circuits.

[13]  A. Fard,et al.  An Analysis of $1/f^{2}$ Phase Noise in Bipolar Colpitts Oscillators (With a Digression on Bipolar Differential-Pair LC Oscillators) , 2007, IEEE Journal of Solid-State Circuits.

[14]  T. Yao,et al.  SiGe BiCMOS 65-GHz BPSK transmitter and 30 to 122 GHz LC-varactor VCOs with up to 21% tuning range , 2004, IEEE Compound Semiconductor Integrated Circuit Symposium, 2004..

[15]  Duixian Liu,et al.  A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[16]  Xiangdong Zhang,et al.  A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators , 1992 .

[17]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[18]  Ning Zhang,et al.  CMOS frequency generation system for W-band radars , 2009, 2009 Symposium on VLSI Circuits.

[19]  Nai-Chung Kuo,et al.  A 60-GHz Frequency Tripler With Gain and Dynamic-Range Enhancement , 2011, IEEE Transactions on Microwave Theory and Techniques.

[20]  B. Gaucher,et al.  A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications , 2006, IEEE Journal of Solid-State Circuits.

[21]  Chien-Ping Lee,et al.  Averaging and Cancellation Effect of High-Order Nonlinearity of a Power Amplifier , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  K. V. Puglia Phase noise analysis of component cascades , 2002 .

[23]  P. Heydari,et al.  A BiCMOS Dual-Band Millimeter-Wave Frequency Synthesizer for Automotive Radars , 2009, IEEE Journal of Solid-State Circuits.

[24]  P. Chevalier,et al.  Design and Scaling of W-Band SiGe BiCMOS VCOs , 2007, IEEE Journal of Solid-State Circuits.

[25]  Lei Zhou,et al.  A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems , 2011, IEEE Journal of Solid-State Circuits.

[26]  M. Bayer,et al.  Cell based fully integrated CMOS frequency synthesizers , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[27]  David D. Wentzloff,et al.  IEEE Transactions on Microwave Theory and Techniques and Antennas and Propagation Announce a Joint Special Issue on Ultra-Wideband (UWB) Technology , 2010 .

[28]  Zhiming Chen,et al.  An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[29]  Chung-Yu Wu,et al.  A Phase-Locked Loop With Injection-Locked Frequency Multiplier in 0.18-$\mu{\hbox{m}}$ CMOS for $V$ -Band Applications , 2009, IEEE Transactions on Microwave Theory and Techniques.

[30]  Zhiwei Xu,et al.  An integrated frequency synthesizer for 81–86GHz satellite communications in 65nm CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[31]  Jri Lee,et al.  A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[32]  D. K. Shaeffer,et al.  Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission , 2003, IEEE J. Solid State Circuits.

[33]  Ali M. Niknejad,et al.  A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging , 2010, IEEE Journal of Solid-State Circuits.

[34]  B.A. Floyd A 16–18.8-GHz Sub-Integer-N Frequency Synthesizer for 60-GHz Transceivers , 2008, IEEE Journal of Solid-State Circuits.

[35]  T. Lee,et al.  Superharmonic injection-locked frequency dividers , 1999, IEEE J. Solid State Circuits.

[36]  J.R. Long,et al.  A 56–65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[37]  Sorin P. Voinigescu,et al.  Design of a Dual W- and D-Band PLL , 2011, IEEE Journal of Solid-State Circuits.

[38]  Sorin P. Voinigescu,et al.  An 18-Gb/s, Direct QPSK Modulation SiGe BiCMOS Transceiver for Last Mile Links in the 70–80 GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[39]  Hans-Martin Rein,et al.  Millimeter-wave VCOs with wide tuning range and low phase noise, fully integrated in a SiGe bipolar production technology , 2003, IEEE J. Solid State Circuits.

[40]  W. Rhee,et al.  Design of high-performance CMOS charge pumps in phase-locked loops , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[41]  D. Marchesan,et al.  A family of monolithic inductor-varactor SiGe-HBT VCOs for 20 GHz to 30 GHz LMDS and fiber-optic receiver applications , 2000, 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest of Papers (Cat. No.00CH37096).

[42]  Y. Baeyens,et al.  A 36–80 GHz High Gain Millimeter-Wave Double-Balanced Active Frequency Doubler in SiGe BiCMOS , 2009, IEEE Microwave and Wireless Components Letters.

[43]  A. Hajimiri,et al.  A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon , 2006, IEEE Journal of Solid-State Circuits.