Hybridizing surrogate techniques, rough sets and evolutionary algorithms to efficiently solve multi-objective optimization problems
暂无分享,去创建一个
[1] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[2] Carlos A. Coello Coello,et al. Pareto-adaptive -dominance , 2007, Evolutionary Computation.
[3] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[4] Bernhard Schölkopf,et al. A tutorial on support vector regression , 2004, Stat. Comput..
[5] Lothar Thiele,et al. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.
[6] Andy J. Keane,et al. Multi-Objective Optimization Using Surrogates , 2010 .
[7] Gary B. Lamont,et al. Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .
[8] Carlos A. Coello Coello,et al. A new proposal for multi-objective optimization using differential evolution and rough sets theory , 2006, GECCO '06.
[9] R. K. Ursem. Multi-objective Optimization using Evolutionary Algorithms , 2009 .
[10] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[11] Yaochu Jin,et al. A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..
[12] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..