On the Covering Radius of First-Order Generalized Reed–Muller Codes
暂无分享,去创建一个
[1] Nicholas J. Patterson,et al. The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.
[2] Natasha Dobrinen,et al. Journal of Combinatorial Theory, Series A , 2015 .
[3] Xiang-dong Hou. Covering Radius of the Reed-Muller CodeR(1, 7) - A Simpler Proof , 1996, J. Comb. Theory, Ser. A.
[4] Philippe Langevin. Covering radius of RM (1, 9) in RM (3, 9) , 1990, EUROCODE.
[5] Geoffrey R. Robinson,et al. Linear Groups , 2022 .
[6] Nicholas J. Patterson,et al. Correction to 'The covering radius of the (215, 16) Reed-Muller code is at least 16276' (May 83 354-356) , 1990, IEEE Trans. Inf. Theory.
[7] Selçuk Kavut,et al. 9-variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class , 2010, Inf. Comput..
[8] Philippe Langevin. On the Orphans and Covering Radius of the Reed-Muller Codes , 1991, AAECC.
[9] Johannes Mykkeltveit. The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.
[10] Thierry P. Berger,et al. The automorphism group of Generalized Reed-Muller codes , 1993, Discret. Math..
[11] Patrick Solé,et al. Asymptotic bounds on the covering radius of binary codes , 1990, IEEE Trans. Inf. Theory.
[12] Jean-Marie Goethals,et al. On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..
[13] J. Hirschfeld. Projective Geometries Over Finite Fields , 1980 .
[14] Elwyn R. Berlekamp,et al. Weight distributions of the cosets of the (32, 6) Reed-Muller code , 1972, IEEE Trans. Inf. Theory.
[15] Tor Helleseth,et al. On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[16] Xiang-dong Hou. Further results on the covering radii of the Reed-Muller codes , 1993, Des. Codes Cryptogr..
[17] J. Dieudonné,et al. La géométrie des groupes classiques , 1963 .