On the Covering Radius of First-Order Generalized Reed–Muller Codes

We generalize to any finite Fq fields a theorem about covering radius of codes of strength 2 proved by Helleseth and coworkers. Then,using this result and partial covering radius, we give bounds for the covering radius of first-order generalized Reed-Muller codes. Finally, using Magma, we get some improvements for F3.

[1]  Nicholas J. Patterson,et al.  The covering radius of the (215, 16) Reed-Muller code is at least 16276 , 1983, IEEE Trans. Inf. Theory.

[2]  Natasha Dobrinen,et al.  Journal of Combinatorial Theory, Series A , 2015 .

[3]  Xiang-dong Hou Covering Radius of the Reed-Muller CodeR(1, 7) - A Simpler Proof , 1996, J. Comb. Theory, Ser. A.

[4]  Philippe Langevin Covering radius of RM (1, 9) in RM (3, 9) , 1990, EUROCODE.

[5]  Geoffrey R. Robinson,et al.  Linear Groups , 2022 .

[6]  Nicholas J. Patterson,et al.  Correction to 'The covering radius of the (215, 16) Reed-Muller code is at least 16276' (May 83 354-356) , 1990, IEEE Trans. Inf. Theory.

[7]  Selçuk Kavut,et al.  9-variable Boolean functions with nonlinearity 242 in the generalized rotation symmetric class , 2010, Inf. Comput..

[8]  Philippe Langevin On the Orphans and Covering Radius of the Reed-Muller Codes , 1991, AAECC.

[9]  Johannes Mykkeltveit The covering radius of the (128, 8) Reed-Muller code is 56 (Corresp.) , 1980, IEEE Trans. Inf. Theory.

[10]  Thierry P. Berger,et al.  The automorphism group of Generalized Reed-Muller codes , 1993, Discret. Math..

[11]  Patrick Solé,et al.  Asymptotic bounds on the covering radius of binary codes , 1990, IEEE Trans. Inf. Theory.

[12]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[13]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[14]  Elwyn R. Berlekamp,et al.  Weight distributions of the cosets of the (32, 6) Reed-Muller code , 1972, IEEE Trans. Inf. Theory.

[15]  Tor Helleseth,et al.  On the covering radius of binary codes (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[16]  Xiang-dong Hou Further results on the covering radii of the Reed-Muller codes , 1993, Des. Codes Cryptogr..

[17]  J. Dieudonné,et al.  La géométrie des groupes classiques , 1963 .