Measurement of Ionospheric Faraday Rotation in Simulated and Real Spaceborne SAR Data

The influence of the atmosphere on a frequency-modulated electromagnetic wave traversing the ionosphere is becoming increasingly important for recent and upcoming low-frequency and wide-bandwidth spaceborne synthetic aperture radar (SAR) systems. The ionized ionosphere induces Faraday rotation (FR) at these frequencies that affects radar polarimetry and causes signal path delays resulting in a reduced range resolution. The work at hand introduces a simulation model of SAR signals passing through the atmosphere, including both frequency-dependent FR and path delays. Based on simulation results from this model [proven with real Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (PALSAR) data], estimation of FR in quad-polarized SAR data using the given approach is shown for raw, range-compressed, and focused radar images. Path delays and signal chirp bandwidth effects are considered. Investigations discuss the suitability of raw and compressed data versus combination of total electron content maps with the Earth's magnetic field for FR estimation and deduced from a large number of analyzed PALSAR data sets.

[1]  Ernest K. Smith,et al.  Ionospheric effects on satellite land mobile systems , 2002 .

[2]  Lars M. H. Ulander,et al.  Performance simulation of spaceborne P-band SAR for global biomass retrieval , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Jun Liu,et al.  Ionospheric effects on SAR imaging: a numerical study , 2003, IEEE Trans. Geosci. Remote. Sens..

[4]  Emmanuel P. Dinnat,et al.  The Influence of Antenna Pattern on Faraday Rotation in Remote Sensing at L-Band , 2007, IEEE Trans. Geosci. Remote. Sens..

[5]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[6]  Dirk H. Hoekman,et al.  Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  Zhensen Wu,et al.  A survey of ionospheric effects on space-based radar , 2004 .

[8]  W. B. Gail A simplified calibration technique for polarimetric radars , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[9]  E. Kawai,et al.  Evaluation of GPS‐based ionospheric TEC map by comparing with VLBI data , 2003 .

[10]  Kevin J. Madders,et al.  EUROPEAN SPACE AGENCY , 1983 .

[11]  W. B. Gail,et al.  Effect of Faraday rotation on polarimetric SAR , 1998 .

[12]  R. Bates,et al.  Effects of magneto-ionic propagation on the polarization scattering matrix , 1965 .

[13]  Shaun Quegan,et al.  Faraday rotation effects on L-band spaceborne SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Franz J. Meyer,et al.  Prediction and detection of Faraday rotation in ALOS PALSAR data , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[15]  Ya-Qiu Jin,et al.  Analysis of the Effects of Faraday Rotation on Spaceborne Polarimetric SAR Observations at $\hbox{P}$-Band , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Masanobu Shimada,et al.  On the use of symmetric scatterers for calibration and validation of PALSAR polarimetric modes , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[17]  Ian G. Cumming,et al.  Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation , 2005 .

[18]  Erich Meier,et al.  Estimation of ionospheric TEC and Faraday rotation for L-band SAR , 2005, SPIE Remote Sensing.

[19]  Anthony Freeman,et al.  Calibration of linearly polarized polarimetric SAR data subject to Faraday rotation , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Susan Macmillan,et al.  International Geomagnetic Reference Field—the tenth generation , 2005 .

[21]  Masanobu Shimada,et al.  The Polarimetric and Interferometric Potential of ALOS PALSAR , 2005 .

[22]  Sassan Saatchi,et al.  On the detection of Faraday rotation in linearly polarized L-band SAR backscatter signatures , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Eric J. M. Rignot,et al.  Effect of Faraday rotation on L-band interferometric and polarimetric synthetic-aperture radar data , 2000, IEEE Trans. Geosci. Remote. Sens..

[24]  Franz J. Meyer,et al.  The Potential of Low-Frequency SAR Systems for Mapping Ionospheric TEC Distributions , 2006, IEEE Geoscience and Remote Sensing Letters.