Inference in Semiparametric Dynamic Models for Binary Longitudinal Data

This article deals with the analysis of a hierarchical semiparametric model for dynamic binary longitudinal responses. The main complicating components of the model are an unknown covariate function and serial correlation in the errors. Existing estimation methods for models with these features are of O(N3), where N is the total number of observations in the sample. Therefore, nonparametric estimation is largely infeasible when the sample size is large, as in typical in the longitudinal setting. Here we propose a new O(N) Markov chain Monte Carlo based algorithm for estimation of the nonparametric function when the errors are correlated, thus contributing to the growing literature on semiparametric and nonparametric mixed-effects models for binary data. In addition, we address the problem of model choice to enable the formal comparison of our semiparametric model with competing parametric and semiparametric specifications. The performance of the methods is illustrated with detailed studies involving simulated and real data.

[1]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[2]  Andrew Harvey,et al.  The econometric analysis of time series , 1991 .

[3]  S. Chib,et al.  Analysis of multivariate probit models , 1998 .

[4]  Robert Kohn,et al.  Additive nonparametric regression with autocorrelated errors , 1998 .

[5]  V. Hajivassiliou,et al.  Smooth unbiased multivariate probability simulators for maximum likelihood estimation of limited dependent variable models , 1993 .

[6]  Lars Peter Hansen,et al.  Multiperiod Probit Models and Orthogonality Condition Estimation , 1983 .

[7]  S. Chib,et al.  Bayes inference in regression models with ARMA (p, q) errors , 1994 .

[8]  Yuhong Yang,et al.  Nonparametric Regression with Correlated Errors , 2001 .

[9]  Y. Mundlak On the Pooling of Time Series and Cross Section Data , 1978 .

[10]  M. Kendall,et al.  Kendall's advanced theory of statistics , 1995 .

[11]  X. Lin,et al.  Inference in generalized additive mixed modelsby using smoothing splines , 1999 .

[12]  Tong Li,et al.  SEMIPARAMETRIC BAYESIAN INFERENCE FOR DYNAMIC TOBIT PANEL DATA MODELS WITH UNOBSERVED HETEROGENEITY , 2008 .

[13]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[14]  Yuedong Wang Smoothing Spline Models with Correlated Random Errors , 1998 .

[15]  Kerrie Mengersen,et al.  [Bayesian Computation and Stochastic Systems]: Rejoinder , 1995 .

[16]  David W. Lewis,et al.  Matrix theory , 1991 .

[17]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[18]  John M. Olin On MCMC sampling in hierarchical longitudinal models , 1999 .

[19]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[20]  M. Hansen,et al.  Spline Adaptation in Extended Linear Models , 1998 .

[21]  Sally Wood,et al.  A Bayesian Approach to Robust Binary Nonparametric Regression , 1998 .

[22]  D. Poirier,et al.  Bayesian Variants of Some Classical Semiparametric Regression Techniques , 2004 .

[23]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[24]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[25]  M. Hutchinson,et al.  ON SPLINE SMOOTHING WITH AUTOCORRELATED ERRORS , 1989 .

[26]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[27]  Yuedong Wang,et al.  Generalized Nonparametric Mixed Effects Models , 2001 .

[28]  R. Shiller,et al.  Smoothness Priors and Nonlinear Regression , 1982 .

[29]  Charles Kooperberg,et al.  Spline Adaptation in Extended Linear Models (with comments and a rejoinder by the authors , 2002 .

[30]  Edmund Taylor Whittaker On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.

[31]  James D. Hamilton Time Series Analysis , 1994 .

[32]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[33]  Robert Kohn,et al.  The Performance of Cross-Validation and Maximum Likelihood Estimators of Spline Smoothing Parameters , 1991 .

[34]  J. Heckman Heterogeneity and State Dependence , 1981 .

[35]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[36]  D. Hyslop,et al.  State dependence, serial correlation and heterogeneity in intertemporal labor force , 1999 .

[37]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[38]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[39]  Thomas S. Shively,et al.  Variable Selection and Function Estimation in Additive Nonparametric Regression Using a Data-Based Prior , 1999 .

[40]  Thomas S. Shively,et al.  Variable selection and function estimation in additive nonparametric regression using a data-based prior. Commentary. Authors' reply , 1999 .

[41]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[42]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[43]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[44]  A. W. Kemp,et al.  Kendall's Advanced Theory of Statistics. , 1994 .

[45]  Justin L. Tobias,et al.  Schools, school quality and achievement growth: Evidence from the Philippines , 2006 .

[46]  Thomas S. Shively,et al.  Model selection in spline nonparametric regression , 2002 .

[47]  W. D. Ray,et al.  The Econometric Analysis of Time Series. , 1981 .

[48]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[49]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[50]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .