Advances in photo-catalysis approach for the removal of toxic personal care product in aqueous environment

Removal of personal care products (PCPs) has become one of the challenging aspects around the globe. From the last few decades, it has been introduced as one of the emerging pollutants to the environment that affects directly or indirectly our ecosystem mainly aqueous environment. From biodegradation to photo-degradation mechanism, there are different categories of treatment methods, while the priority is based upon being cheaper, effective, reliable, environmental and economically friendly that should be compatible to water chemistry. Currently, photo-catalysis is considered as one of the most reliable and efficient non-conservative technologies for the degradation of PCPs industrial effluents from the aqueous environment. A recent development of photo-catalysis technology for the removal of PCPs gives efficient performance by using carbonaceous TiO2 composites. By using hybrid nature of photo-catalyst, one can achieve suitably high and attractive efficiency with comparable low cost. In this review article, the different photo-catalysis mechanism while moving from non-photo-catalysis to photo-catalysis approach and its practical application for the removal efficiency of various polluting agents have been discussed. A critical evaluation on the various parameters for this approach is highlighted. Future perspective refers to the need for coupling of different semiconducting nano-materials with photo-catalysis that could yield higher efficiency than those of previous one. This facilitates further insight into photo-catalysis approach for the efficient degradation of PCPs to ensure healthy aqueous environment, and some points regarding fate of PCPs should be discussed in future perspective.

[1]  S. Holladay,et al.  Parabens: Potential impact of Low-Affinity Estrogen receptor Binding chemicals on Human health , 2013, Journal of toxicology and environmental health. Part B, Critical reviews.

[2]  Ray Sharples,et al.  Reducing the environmental risks of formulated personal care products using an end-of-life scoring and ranking system for ingredients: Method and case studies , 2018 .

[3]  Diana M. Ceballos,et al.  Phthalate and Organophosphate Plasticizers in Nail Polish: Evaluation of Labels and Ingredients , 2018, Environmental science & technology.

[4]  A. Steinemann Fragranced consumer products: sources of emissions, exposures, and health effects in the UK , 2018, Air Quality, Atmosphere & Health.

[5]  Shane A. Snyder,et al.  Pharmaceuticals, Personal Care Products, and Endocrine Disruptors in Water: Implications for the Water Industry , 2003 .

[6]  Kyungho Choi,et al.  Pharmaceuticals and Personal Care Products in the Environment: What Are the Big Questions? , 2012, Environmental health perspectives.

[7]  Ying Guo,et al.  A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. , 2013, Environmental science & technology.

[8]  Y. Picó,et al.  Effect of methylparaben in Artemia franciscana. , 2017, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[9]  A. Tawfik,et al.  Anaerobic biodegradation of personnel care products (PCPs) wastewater in an up-flow anaerobic sludge blanket (UASB) reactor , 2012 .

[10]  M. Tysklind,et al.  Removal of pharmaceuticals in WWTP effluents by ozone and hydrogen peroxide , 2014 .

[11]  H. Habibi,et al.  Personal Care Products in the Aquatic Environment: A Case Study on the Effects of Triclosan in Fish , 2013 .

[12]  V. Smith,et al.  Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. , 2003, Environmental science & technology.

[13]  Jaeweon Cho,et al.  Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review , 2015 .

[14]  K. Shahzad,et al.  Removal of acetylsalicylate and methyl-theobromine from aqueous environment using nano-photocatalyst WO3-TiO2 @g-C3N4 composite. , 2019, Journal of hazardous materials.

[15]  N. Hashim Visible Light Driven Photocatalysis for Degradation of Diclofenac , 2016 .

[16]  R. Hoppmann,et al.  Central nervous system side effects of nonsteroidal anti-inflammatory drugs. Aseptic meningitis, psychosis, and cognitive dysfunction. , 1991, Archives of internal medicine.

[17]  Gang Yu,et al.  Occurrence, sources and fate of pharmaceuticals and personal care products in the groundwater: A review , 2015 .

[18]  W. Ng,et al.  Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. , 2002, Water research.

[19]  G. Zeng,et al.  Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis , 2018, Coordination Chemistry Reviews.

[20]  M. Capdevielle,et al.  Deriving a water quality guideline for protection of aquatic communities exposed to triclosan in the Canadian environment , 2018, Integrated environmental assessment and management.

[21]  John L. Zhou,et al.  Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. , 2017, Journal of hazardous materials.

[22]  N. Hussien,et al.  Genotoxic and Hypogonadism Effect of Triclosan Treatment and the Mitigating Effect of Vitamin E in Male Albino Mice , 2017 .

[23]  R. Saravanan,et al.  Basic Principles, Mechanism, and Challenges of Photocatalysis , 2017 .

[24]  L. Campos,et al.  The application of GAC sandwich slow sand filtration to remove pharmaceutical and personal care products. , 2018, The Science of the total environment.

[25]  R. Daghrir,et al.  Photoelectrocatalytic technologies for environmental applications , 2012 .

[26]  B. Kasprzyk-Hordern,et al.  The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. , 2017, Chemosphere.

[27]  M. Sagir,et al.  Carbon nanodots and rare metals (RM = La, Gd, Er) doped tungsten oxide nanostructures for photocatalytic dyes degradation and hydrogen production , 2019, Separation and Purification Technology.

[28]  F. Galgani,et al.  Occurrence of phthalate acid esters (PAEs) in the northwestern Mediterranean Sea and the Rhone River , 2017 .

[29]  M. Tahir,et al.  Morphology Tailored Synthesis of C-WO3 nanostructures and its Photocatalytic Application , 2018, Journal of Inorganic and Organometallic Polymers and Materials.

[30]  M. Tahir,et al.  Synthesis of Nanostructured Based WO3 Materials for Photocatalytic Applications , 2018, Journal of Inorganic and Organometallic Polymers and Materials.

[31]  Chenxi Wu,et al.  Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review , 2017, Reviews in Environmental Science and Bio/Technology.

[32]  O. Pringault,et al.  Impact of two plastic-derived chemicals, the Bisphenol A and the di-2-ethylhexyl phthalate, exposure on the marine toxic dinoflagellate Alexandrium pacificum. , 2018, Marine pollution bulletin.

[33]  N. R. Khalid,et al.  Enhanced photocatalytic performance of visible-light active graphene-WO3 nanostructures for hydrogen production , 2018, Materials Science in Semiconductor Processing.

[34]  R. Zulaikha Hazardous Ingredients in Cosmetics and Personal Care Products and Health Concern: A Review , 2015 .

[35]  R. Meffe,et al.  Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. , 2014, The Science of the total environment.

[36]  P. Lara-Martín,et al.  Degradation kinetics of pharmaceuticals and personal care products in surface waters: photolysis vs biodegradation. , 2017, The Science of the total environment.

[37]  Damià Barceló,et al.  Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. , 2009, Water research.

[38]  Xin Wang,et al.  Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[39]  Teerakiat Kerdcharoen,et al.  High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. , 2010, International journal of pharmaceutics.

[40]  H. Znad,et al.  Membrane Bioreactor for Pharmaceuticals and Personal Care Products Removal From Wastewater , 2018 .

[41]  Chang Soon Choi,et al.  Effects of Triclosan on Neural Stem Cell Viability and Survival , 2016, Biomolecules & therapeutics.

[42]  Stuart J. Khan,et al.  Removal of trace organics by anaerobic membrane bioreactors. , 2014, Water research.

[43]  M. Hosomi,et al.  Removal of PCDD/Fs from contaminated sediment and released effluent gas by charcoal in a proposed cost-effective thermal treatment process. , 2013, Chemosphere.

[44]  Xiaoqin Wu,et al.  Metabolism of pharmaceutical and personal care products by carrot cell cultures. , 2016, Environmental pollution.

[45]  Paul J. Dauenhauer,et al.  Efficient mechano-catalytic depolymerization of crystalline cellulose by formation of branched glucan chains , 2015 .

[46]  S. Sikka,et al.  Perfumery, Essential Oils, and Household Chemicals Affecting Reproductive and Sexual Health , 2018 .

[47]  R. Tukey,et al.  Triclosan: A Widespread Environmental Toxicant with Many Biological Effects. , 2016, Annual review of pharmacology and toxicology.

[48]  A. Ibhadon,et al.  Heterogeneous Photocatalysis: Recent Advances and Applications , 2013 .

[49]  F. Borrull,et al.  Analytical methods for personal-care products in environmental waters , 2011 .

[50]  F. Ventura,et al.  Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. , 2008, Environmental science & technology.

[51]  Hiroaki Tanaka,et al.  Ozone treatment process for the removal of pharmaceuticals and personal care products in wastewater , 2018, Ozone: Science & Engineering.

[52]  T. Ternes,et al.  Pharmaceuticals and personal care products in the environment: agents of subtle change? , 1999, Environmental health perspectives.

[53]  Lisa M. Weatherly,et al.  Triclosan exposure, transformation, and human health effects , 2017, Journal of toxicology and environmental health. Part B, Critical reviews.

[54]  N. Rahman,et al.  Removal of Selected Endocrine Disrupting Chemicals and Personal Care Products in Surface Waters and Secondary Wastewater by Ozonation , 2011, Water environment research : a research publication of the Water Environment Federation.

[55]  H Kroiss,et al.  Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. , 2005, Water research.

[56]  Wenbin Liu,et al.  Trophic Magnification of Parabens and Their Metabolites in a Subtropical Marine Food Web. , 2017, Environmental science & technology.

[57]  Caifeng Wang,et al.  Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms. , 2015, Environmental pollution.

[58]  Ching‐Chang Lee,et al.  Characterization of phthalates exposure and risk for cosmetics and perfume sales clerks. , 2018, Environmental pollution.

[59]  Sihem Ben Abdelmelek,et al.  Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes. , 2011, Environmental science & technology.

[60]  J. L. Acero,et al.  Removal of emerging contaminants from secondary effluents by micellar-enhanced ultrafiltration , 2017 .

[61]  Francesca Stefania Freyria,et al.  Nanomaterials for the Abatement of Pharmaceuticals and Personal Care Products from Wastewater , 2018 .

[62]  M. Tahir,et al.  Insighting role of reduced graphene oxide in BiVO4 nanoparticles for improved photocatalytic hydrogen evolution and dyes degradation , 2019, International Journal of Energy Research.

[63]  M. Tahir,et al.  Activated carbon doped WO3 for photocatalytic degradation of rhodamine-B , 2019, Applied Nanoscience.

[64]  Malay Chaudhuri,et al.  Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis , 2010 .

[65]  A. Alves,et al.  Applications of molecularly imprinted polymers to the analysis and removal of personal care products: A review. , 2016, Talanta.

[66]  R. Quinta-Ferreira,et al.  Application of ozonation for pharmaceuticals and personal care products removal from water. , 2017, The Science of the total environment.

[67]  Wen-Ling Chen,et al.  Systematic screening and identification of the chlorinated transformation products of aromatic pharmaceuticals and personal care products using high-resolution mass spectrometry. , 2018, The Science of the total environment.

[68]  A. Bandyopadhyay,et al.  Insights of the Removal Mechanisms of Pharmaceutical and Personal Care Products in Constructed Wetlands , 2018, Current Pollution Reports.

[69]  Y. Kho,et al.  Phototoxicity and chronic toxicity of methyl paraben and 1,2-hexanediol in Daphnia magna , 2016, Ecotoxicology.

[70]  Y. Yue,et al.  Nano-p–n junctions on surface-coarsened TiO2 nanobelts with enhanced photocatalytic activity , 2011 .

[71]  T. Iguchi,et al.  Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction , 2018, Journal of applied toxicology : JAT.

[72]  D. Grant,et al.  Physical properties of parabens and their mixtures: solubility in water, thermal behavior, and crystal structures. , 1999, Journal of pharmaceutical sciences.

[73]  Diana Montes-Grajales,et al.  Occurrence of personal care products as emerging chemicals of concern in water resources: A review. , 2017, The Science of the total environment.

[74]  Zahra Talebpour,et al.  The survey of analytical methods for sample preparation and analysis of fragrances in cosmetics and personal care products , 2018 .

[75]  A. Baccarelli,et al.  Placental lncRNA Expression Is Associated With Prenatal Phthalate Exposure , 2018, Toxicological sciences : an official journal of the Society of Toxicology.

[76]  D. Zellner,et al.  Masculinity/femininity of fine fragrances affects color-odor correspondences: a case for cognitions influencing cross-modal correspondences. , 2007, Chemical senses.

[77]  P. Chatonnet,et al.  Contamination of wines and spirits by phthalates: types of contaminants present, contamination sources and means of prevention , 2014, Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment.

[78]  S. Harrad,et al.  Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment , 2017 .

[79]  W. Mai,et al.  Supramolecular Hydrogels Sustained Release Triclosan with Controlled Antibacterial Activity and Limited Cytotoxicity , 2013 .

[80]  Martin Kampmann,et al.  Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater? , 2003, Water research.

[81]  Jaeweon Cho,et al.  Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. , 2007, Water research.

[82]  S. Vigneswaran,et al.  The Application of Photocatalytic Oxidation in Removing Pentachlorophenol from Contaminated Water , 2010 .

[83]  Manabu Fujii,et al.  Photodegradation of pharmaceuticals and personal care products in water treatment using carbonaceous-TiO2 composites: A critical review of recent literature. , 2018, Water research.