Performance Evaluation of Population Seeding Techniques of Permutation-Coded GA Traveling Salesman Problems Based Assessment: Performance Evaluation of Population Seeding Techniques of Permutation-Coded GA

Geneticalgorithms(GAs)areapopulation-basedmeta-heuristicglobaloptimizationtechniquefor dealingwithcomplexproblemswithaverylargesearchspace.Thepopulationinitializationisacrucial taskinGAsbecauseitplaysavitalroleintheconvergencespeed,problemsearchspaceexploration, andalsothequalityofthefinaloptimalsolution.Thoughtheimportanceofdecidingproblem-specific populationinitializationinGAiswidelyrecognized,itishardlyaddressedintheliterature.Inthis article,differentpopulationseedingtechniquesforpermutation-codedgeneticalgorithmssuchas random,nearestneighbor(NN),genebank(GB),sortedpopulation(SP),andselectiveinitialization (SI),alongwiththreenewlyproposedordered-distance-vector-basedinitializationtechniqueshave beenextensivelystudied.Theabilityofeachpopulationseedingtechniquehasbeenexaminedin termsofasetofperformancecriteria,suchascomputationtime,convergencerate,errorrate,average convergence,convergencediversity,nearest-neighborratio,averagedistinctsolutionsanddistribution ofindividuals.Oneofthefamouscombinatorialhardproblemsofthetravelingsalesmanproblem (TSP)isbeingchosenasthetestbedandtheexperimentsareperformedonlarge-sizedbenchmark TSPinstancesobtainedfromstandardTSPLIB.Thescopeoftheexperimentsinthisarticleislimited totheinitializationphaseoftheGAandthisrestrictedscopehelpstoassesstheperformanceofthe populationseedingtechniquesintheirintendedphasealone.Theexperimentationanalysesarecarried outusingstatisticaltoolstoclaimtheuniqueperformancecharacteristicofeachpopulationseeding techniquesandbestperformingtechniquesareidentifiedbasedontheassessmentcriteriadefined andthenatureoftheapplication. KEywoRdS Combinatorial Problem, Genetic Algorithm, Order Distance Vector, Population Seeding Technique, Traveling Salesman Problem, Tsplib International Journal of Applied Metaheuristic Computing Volume 10 • Issue 2 • April-June 2019

[1]  K. Miettinen,et al.  Quasi-random initial population for genetic algorithms , 2004 .

[2]  Lawrence J. Schmitt,et al.  Performance characteristics of alternative genetic algorithmic approaches to the traveling salesman problem using path representation: An empirical study , 1998, Eur. J. Oper. Res..

[3]  O. Yugay,et al.  Hybrid Genetic Algorithm for Solving Traveling Salesman Problem with Sorted Population , 2008, 2008 Third International Conference on Convergence and Hybrid Information Technology.

[4]  Xiang Li,et al.  Initialization strategies to enhancing the performance of genetic algorithms for the p-median problem , 2011, Comput. Ind. Eng..

[5]  Kaisa Miettinen,et al.  On initial populations of a genetic algorithm for continuous optimization problems , 2007, J. Glob. Optim..

[6]  David Stuart Robertson,et al.  Evolution in ecological agent systems , 2011, Int. J. Bio Inspired Comput..

[7]  David E. Goldberg,et al.  Computer-aided pipeline operation using genetic algorithms and rule learning. PART I: Genetic algorithms in pipeline optimization , 1987, Engineering with Computers.

[8]  Liu Fuyan,et al.  An improved genetic approach , 2005, 2005 International Conference on Neural Networks and Brain.

[9]  Lianfang Tian,et al.  An effective robot trajectory planning method using a genetic algorithm , 2004 .

[10]  Jie Zhu,et al.  A genetic algorithm for finding a path subject to two constraints , 2013, Appl. Soft Comput..

[11]  Asoke Kumar Bhunia,et al.  Genetic algorithm for asymmetric traveling salesman problem with imprecise travel times , 2011, J. Comput. Appl. Math..

[12]  D. Kaur,et al.  Performance enhancement in solving Traveling Salesman Problem using hybrid genetic algorithm , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[13]  K. Katayama,et al.  The efficiency of hybrid mutation genetic algorithm for the travelling salesman problem , 2000 .

[14]  Liangsheng Qu,et al.  A Synergetic Approach to Genetic Algorithms for Solving Traveling Salesman Problem , 1999, Inf. Sci..

[15]  Shi Yang,et al.  A novel initialization method for solving Flexible Job-shop Scheduling Problem , 2009, 2009 International Conference on Computers & Industrial Engineering.

[16]  Ciprian Dobre,et al.  Near-Optimal Scheduling Based on Immune Algorithms in Distributed Environments , 2010, 2010 International Conference on Complex, Intelligent and Software Intensive Systems.

[17]  Jean-Yves Potvin,et al.  Genetic Algorithms for the Traveling Salesman Problem , 2005 .

[18]  Novruz Allahverdi,et al.  Development a new mutation operator to solve the Traveling Salesman Problem by aid of Genetic Algorithms , 2011, Expert Syst. Appl..

[19]  Yulan Hu,et al.  Parallel Search Strategies for TSPs Using a Greedy Genetic Algorithm , 2007, Third International Conference on Natural Computation (ICNC 2007).

[20]  Kazuo Iwano,et al.  New TSP Construction Heuristics and Their Relationships to the 2-Opt , 1997, J. Heuristics.

[21]  D. B. Duncan MULTIPLE RANGE AND MULTIPLE F TESTS , 1955 .

[22]  Ramachandran Baskaran,et al.  A new population seeding technique for permutation-coded Genetic Algorithm: Service transfer approach , 2014, J. Comput. Sci..

[23]  Shahryar Rahnamayan,et al.  A novel population initialization method for accelerating evolutionary algorithms , 2007, Comput. Math. Appl..

[24]  P. Dhavachelvan,et al.  A novel population initialization technique for Genetic Algorithm , 2013, 2013 International Conference on Circuits, Power and Computing Technologies (ICCPCT).

[25]  Shyi-Ming Chen,et al.  Solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques , 2011, Expert Syst. Appl..

[26]  Shyi-Ming Chen,et al.  A new method for solving the traveling salesman problem based on the genetic simulated annealing ant colony system with particle swarm optimization techniques , 2010, 2010 International Conference on Machine Learning and Cybernetics.

[27]  G. Andal Jayalakshmi,et al.  A Hybrid Genetic Algorithm - A New Approach to Solve Traveling Salesman Problem , 2001, Int. J. Comput. Eng. Sci..

[28]  Edmund K. Burke,et al.  Initialization Strategies and Diversity in Evolutionary Timetabling , 1998, Evolutionary Computation.

[29]  Chris D. Nugent,et al.  Genetic algorithm and pure random search for exosensor distribution optimisation , 2012, Int. J. Bio Inspired Comput..

[30]  Junzhou Luo,et al.  QoS routing based on genetic algorithm , 1999, Comput. Commun..

[31]  Yih-Long Chang,et al.  Multi-criteria sequence-dependent job shop scheduling using genetic algorithms , 2009, Comput. Ind. Eng..

[32]  Sanghamitra Bandyopadhyay,et al.  Genetic operators for combinatorial optimization in TSP and microarray gene ordering , 2007, Applied Intelligence.

[33]  Ana Colubi,et al.  Computational Statistics and Data Analysis Fuzzy Data Treated as Functional Data: a One-way Anova Test Approach , 2022 .

[34]  Magdalene Marinaki,et al.  A hybrid genetic - Particle Swarm Optimization Algorithm for the vehicle routing problem , 2010, Expert Syst. Appl..

[35]  Jian Ma,et al.  A hybrid grouping genetic algorithm for reviewer group construction problem , 2011, Expert Syst. Appl..

[36]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[37]  Chai-Yeoung Jung,et al.  The optimal solution of TSP using the new mixture initialization and sequential transformation method in genetic algorithm , 2006 .

[38]  Rong Yang,et al.  Solving large travelling salesman problems with small populations , 1997 .

[39]  John J. Grefenstette,et al.  Genetic Algorithms for the Traveling Salesman Problem , 1985, ICGA.

[40]  Kalyanmoy Deb,et al.  Domain-specific initial population strategy for compliant mechanisms using customized genetic algorithm , 2011 .

[41]  Cheng-Fa Tsai,et al.  A new approach for solving large traveling salesman problem using evolutionary ant rules , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[42]  Xiao-Ping Liao,et al.  An orthogonal genetic algorithm with total flowtime minimization for the no-wait flow shop problem , 2009, 2009 International Conference on Machine Learning and Cybernetics.