Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling

The lifespan of Caenorhabditis elegans is regulated by the insulin/insulin-like growth factor (IGF)-1 receptor homolog DAF-2, which signals through a conserved phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Mutants in this pathway remain youthful and active much longer than normal animals and can live more than twice as long. This lifespan extension requires DAF-16, a forkhead/winged-helix transcription factor. DAF-16 is thought to be the main target of the DAF-2 pathway. Insulin/IGF-1 signaling is thought to lead to phosphorylation of DAF-16 by AKT activity, which in turn shortens lifespan. Here, we show that the DAF-2 pathway prevents DAF-16 accumulation in nuclei. Disrupting Akt-consensus phosphorylation sites in DAF-16 causes nuclear accumulation in wild-type animals, but, surprisingly, has little effect on lifespan. Thus the DAF-2 pathway must have additional outputs. Lifespan in C. elegans can be extended by perturbing sensory neurons or germ cells. In both cases, lifespan extension requires DAF-16. We find that both sensory neurons and germline activity regulate DAF-16 accumulation in nuclei, but the nuclear localization patterns are different. Together these findings reveal unexpected complexity in the DAF-16-dependent pathways that regulate aging.

[1]  J. Thomas,et al.  Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. , 1992, Genetics.

[2]  C. Kenyon,et al.  A C. elegans mutant that lives twice as long as wild type , 1993, Nature.

[3]  G. Ruvkun,et al.  daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. , 1994, Genetics.

[4]  L. Pease,et al.  In vitro synthesis of novel genes: mutagenesis and recombination by PCR. , 1994, PCR methods and applications.

[5]  S. Melov,et al.  Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[6]  C. Kenyon,et al.  The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. , 1995, Genetics.

[7]  G. Ruvkun,et al.  A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans , 1996, Nature.

[8]  J. Thomas,et al.  Genetic analysis of the roles of daf-28 and age-1 in regulating Caenorhabditis elegans dauer formation. , 1996, Genetics.

[9]  Koutarou D. Kimura,et al.  daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. , 1997, Science.

[10]  G. Ruvkun,et al.  The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans , 1997, Nature.

[11]  C. Kenyon,et al.  daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. , 1997, Science.

[12]  D. Riddle C. Elegans II , 1998 .

[13]  G. Ruvkun,et al.  The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. , 1998, Molecular cell.

[14]  G. Ruvkun,et al.  Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. , 1998, Genes & development.

[15]  J. Apfeld,et al.  Cell Nonautonomy of C. elegans daf-2 Function in the Regulation of Diapause and Life Span , 1998, Cell.

[16]  T. Hunter,et al.  Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Cohen,et al.  Phosphorylation of Serine 256 by Protein Kinase B Disrupts Transactivation by FKHR and Mediates Effects of Insulin on Insulin-like Growth Factor-binding Protein-1 Promoter Activity through a Conserved Insulin Response Sequence* , 1999, The Journal of Biological Chemistry.

[18]  Y. Nishizuka,et al.  Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Kuwabara,et al.  Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN , 1999, Current Biology.

[20]  Geert J. P. L. Kops,et al.  Direct control of the Forkhead transcription factor AFX by protein kinase B , 1999, Nature.

[21]  J. Lees,et al.  Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Accili,et al.  Insulin Stimulates Phosphorylation of the Forkhead Transcription Factor FKHR on Serine 253 through a Wortmannin-sensitive Pathway* , 1999, The Journal of Biological Chemistry.

[23]  G. Ruvkun,et al.  A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. , 1999, Genes & development.

[24]  Cynthia Kenyon,et al.  Signals from the reproductive system regulate the lifespan of C. elegans , 1999, Nature.

[25]  M. Greenberg,et al.  Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor , 1999, Cell.

[26]  J. Apfeld,et al.  Regulation of lifespan by sensory perception in Caenorhabditis elegans , 1999, Nature.

[27]  K. Guan,et al.  Negative Regulation of the Forkhead Transcription Factor FKHR by Akt* , 1999, The Journal of Biological Chemistry.

[28]  L. Guarente,et al.  Genetic pathways that regulate ageing in model organisms , 2000, Nature.

[29]  D. Riddle,et al.  Defining wild-type life span in Caenorhabditis elegans. , 2000, The journals of gerontology. Series A, Biological sciences and medical sciences.

[30]  Koutarou D. Kimura,et al.  Regulation of C. elegans life-span by insulinlike signaling in the nervous system. , 2000, Science.

[31]  C. Kenyon A Conserved Regulatory System for Aging , 2001, Cell.