Operator's Approach to the Problems with Concentrated Factors

In this paper finite-difference schemes approximating the one-dimensional initial-boundary value problems for the heat equation with concentrated capacity are derived. An abstract operator's method is developed for studying such problems. Convergence rate estimates consistent with the smoothness of the data are obtained.

[1]  Ilia A. Braianov Convergence of a Crank-Nicolson Difference Scheme for Heat Equations with Interface in the Heat Flow and Concentrated Heat Capacity , 1996 .

[2]  Lubin G. Vulkov,et al.  On the convergence of finite difference schemes for the heat equation with concentrated capacity , 2001, Numerische Mathematik.

[3]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[4]  Lubin G. Vulkov Applications of Steklov-Type Eigenvalue Problems to Convergence of Difference Schemes for Parabolic and Hyperbolic Equations with Dynamical Boundary Conditions , 1996, WNAA.

[5]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[6]  Lubin G. Vulkov,et al.  Finite Difference Schemes with Variable Weights for Parabolic Equations with Concentrated Capacity , 1997, LSSC.

[7]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[8]  A. Samarskii The Theory of Difference Schemes , 2001 .

[9]  Joachim Escher,et al.  Quasilinear parabolic systems with dynamical boundary conditions , 1993 .

[10]  J. Wloka,et al.  Partial differential equations , 1987 .

[11]  J. Wloka,et al.  Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .

[12]  J. Hadamard,et al.  Leçons D'Analyse Fonctionnelle , 1934, The Mathematical Gazette.

[13]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[14]  Vasilii S Vladimirov Equations of mathematical physics , 1971 .