Improvements of the Alder-Strassen Bound: Algebras with Nonzero Radical

Let C(A) denote the multiplicative complexity of a finite dimensional associative k-algebra A. For algebras A with nonzero radical rad A, we exhibit several lower bound techniques for C(A) that yield bounds significantly above the Alder-Strassen bound. In particular, we prove that the multiplicative complexity of the multiplication in the algebras k[X1, ..., Xn]/ Id+1(X1, ..., Xn) is bounded from below by 3ċ(n+d/n) - (n+ċd/2ċ/n) - (n+ċd/2ċ/n), where Id(X1, ..., Xn) denotes the ideal generated by all monomials of degree d in X1, ..., Xn. Furthermore, we show the lower bound C(Tn(k)) ≥ (2 1/8 - o(1)) dim Tn(k) for the multiplication of upper triangular matrices.

[1]  Markus Bläser A (5/2)n2-Lower Bound for the Multiplicative Complexity of n×n-Matrix Multiplication , 2001, STACS.

[2]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[3]  Volker Strassen,et al.  On the Algorithmic Complexity of Associative Algebras , 1981, Theor. Comput. Sci..

[4]  Y. Drozd,et al.  Finite dimensional algebras , 1994 .

[5]  Markus Bläser Untere Schranken für den Rang assoziativer Algebren , 1999 .

[6]  Peter Gabriel,et al.  Finite dimensional algebras , 1986 .

[7]  Hans F. de Groote Lectures on the Complexity of Bilinear Problems , 1987, Lecture Notes in Computer Science.

[8]  K. Ramachandra,et al.  Vermeidung von Divisionen. , 1973 .

[9]  V. Pan METHODS OF COMPUTING VALUES OF POLYNOMIALS , 1966 .

[10]  Volker Strassen,et al.  Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[11]  Joseph JáJá On the complexity of bilinear forms with commutativity , 1979, STOC '79.

[12]  Joseph JáJá On the Complexity of Bilinear Forms with Commutativity , 1980, SIAM J. Comput..

[13]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[14]  Markus Bläser Bivariate Polynomial Multiplication , 1998, FOCS.

[15]  Jacques Morgenstern,et al.  On associative algebras of minimal rank , 1984, International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes.

[16]  Markus Bläser Lower bounds for the multiplicative complexity of matrix multiplication , 1999, computational complexity.

[17]  Markus Bläser Lower bounds for the bilinear complexity of associative algebras , 2000, computational complexity.