Comparison of linear, nonlinear and feature selection methods for EEG signal classification
暂无分享,去创建一个
HaneXHoe @YHKUHOHHPOBaHUe 4elIOBeKO-MUUUHHbIX UHTep@ekC,B (YMH), OcHoBauHOe na CnoHTaHmx CH~WUI~X 3 n e ~ ~ p o 3 ~ q e @ a n o r p a ~ ~ M (33r), TPpe6yeT TOYHOfi KnaCCW@WKaUWU MHOIDKaUaJIbHbIX 33r. Pa3pa60m:a Knaccu@mampoe 33r pnn qMM ocme~cu OTKPMTO~~ Haywoti npo6neMOii, rpynHoCTb KOTOPOR otjycnosneea Heo6xoanMocnm n3Bne9eHm cnommx npCTpaHCTBeHHbIX U BpMeHHMX U306pWeHUfi U3 3aUIYMJleUHblX MHOmMePHMX 8peMeHHbIX pWO8, nOJlFaeMLdX npM H3MepeHHH 331‘.
[1] Charles W. Anderson,et al. EEG Subspace Representations and Feature Selection for Brain-Computer Interfaces , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.
[2] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .