Combining QCR and CHR for convex quadratic pure 0–1 programming problems with linear constraints

[1]  Monique Guignard-Spielberg,et al.  Algorithms for the generalized quadratic assignment problem combining Lagrangean decomposition and the Reformulation-Linearization Technique , 2010, Eur. J. Oper. Res..

[2]  Alain Billionnet,et al.  Improving the performance of standard solvers for quadratic 0-1 programs by a tight convex reformulation: The QCR method , 2009, Discret. Appl. Math..

[3]  Alain Billionnet,et al.  Quadratic 0-1 programming: Tightening linear or quadratic convex reformulation by use of relaxations , 2008, RAIRO Oper. Res..

[4]  Alain Billionnet,et al.  Best reduction of the quadratic semi-assignment problem , 2001, Discret. Appl. Math..

[5]  Balder Von Hohenbalken,et al.  Simplicial decomposition in nonlinear programming algorithms , 1977, Math. Program..

[6]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[7]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[8]  Alain Billionnet,et al.  Using a Mixed Integer Quadratic Programming Solver for the Unconstrained Quadratic 0-1 Problem , 2007, Math. Program..

[9]  M. Plateau Reformulations quadratiques convexes pour la programmation quadratique en variables 0-1 , 2006 .

[10]  M. Guignard Lagrangean relaxation , 2003 .

[11]  Seongje Ahn On solving some optimization problems in stochastic and integer programming with applications in finance and banking , 1997 .

[12]  J. A. Ventura,et al.  Restricted simplicial decomposition: computation and extensions , 1987 .

[13]  Peter L. Hammer,et al.  Some remarks on quadratic programming with 0-1 variables , 1970 .