LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE SWIFT SAMPLE AND CHARACTERIZATION OF THE ABSORBERS

We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Lyα covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., γ-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher γ-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope βOX 39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e.g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Lyα absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for H I as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs 275.D-5022 (PI: Chincarini), 075.D-0270 (PI: Fynbo), 077.D-0661 (PI: Vreeswijk), 077.D-0805 (PI: Tagliaferri), 177.A-0591 (PI: Hjorth), 078.D-0416 (PI: Vreeswijk), 079.D-0429 (PI: Vreeswijk), 080.D-0526 (PI: Vreeswijk), 081.A-0135 (PI: Greiner), 281.D-5002 (PI: Della Valle), and 081.A-0856 (PI: Vreeswijk). Also based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data obtained herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck foundation.

[1]  R. Carswell,et al.  Absorption Lines in the Spectra of Quasistellar Objects , 1981 .

[2]  C. Kouveliotou,et al.  Identification of two classes of gamma-ray bursts , 1993 .

[3]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[4]  C. Kouveliotou,et al.  Transient optical emission from the error box of the γ-ray burst of 28 February 1997 , 1997, Nature.

[5]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[6]  L. A. Antonelli,et al.  Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997 , 1997, Nature.

[7]  Joshua S. Bloom,et al.  Gamma-ray bursts from stellar remnants - Probing the universe at high redshift , 1998 .

[8]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[9]  David W. Hogg Andrew S. Fruchter Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 04/03/99 THE FAINT-GALAXY HOSTS OF GAMMA-RAY BURSTS , 1999 .

[10]  E. Rol,et al.  The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;??? , 2000 .

[11]  James E. Rhoads,et al.  X-Ray Destruction of Dust along the Line of Sight to γ-Ray Bursts , 2001, astro-ph/0106343.

[12]  I. Hook,et al.  The corals survey I: new estimates of the number density and gas content of damped lyman alpha systems free from dust bias , 2001, astro-ph/0109205.

[13]  C. Guidorzi,et al.  Detection of the optical afterglow of GRB 000630: Implications for dark bursts , 2001, astro-ph/0101425.

[14]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[15]  S. Covino,et al.  On the role of extinction in failed gamma-ray burst optical/infrared afterglows , 2002 .

[16]  J. P. U. Fynbo,et al.  Absorption systems in the spectrum of GRB 021004 , 2002, astro-ph/0210654.

[17]  S. M. Fall,et al.  Heavy-Element Abundances and Dust Depletions in the Host Galaxies of Three Gamma-Ray Bursts , 2002, astro-ph/0203154.

[18]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[19]  Carnegie Observatories,et al.  The Gemini Deep Deep Survey. II. Metals in Star-forming Galaxies at Redshift 1.3 < z < 2* , 2003 .

[20]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[21]  P. Moller,et al.  New search strategy for high z intervening absorbers: GRB 021004, a pilot study , 2003 .

[22]  J. Bloom Is the Redshift Clustering of Long-Duration Gamma-Ray Bursts Significant? , 2003, astro-ph/0302249.

[23]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[24]  J. Gorosabel,et al.  Swift identification of dark gamma-ray bursts , 2004 .

[25]  IAA-CSIC,et al.  UV star-formation rates of GRB host galaxies , 2004, astro-ph/0407066.

[26]  S. Noll,et al.  The FORS Deep Field Spectroscopic Survey , 2004, astro-ph/0401500.

[27]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[28]  S. B. Cenko,et al.  Afterglows, Redshifts, and Properties of Swift Gamma-Ray Bursts , 2005, astro-ph/0505107.

[29]  P. Moller,et al.  Ly+ and ultraviolet emission from high-redshift gamma-ray burst hosts: to what extent do gamma-ray bursts trace star formation? , 2005 .

[30]  J. X. Prochaska,et al.  GRB 050408: A Bright Gamma-Ray Burst Probing an Atypical Galactic Environment , 2005, astro-ph/0512081.

[31]  Max Pettini,et al.  Zn and Cr abundances in damped Lyman alpha systems from the CORALS survey , 2005 .

[32]  Switzerland,et al.  Stellar evolution with rotation - XIII. Predicted GRB rates at various Z , 2005, astro-ph/0507343.

[33]  J. P. Osborne,et al.  Swift UVOT Observations of X-Ray Flash 050406 , 2005, astro-ph/0601182.

[34]  Jason X. Prochaska,et al.  Echelle Spectroscopy of a Gamma-Ray Burst Afterglow at z = 3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe , 2005 .

[35]  P. Moller,et al.  Multiwavelength Studies of the Optically Dark Gamma-Ray Burst 001025A , 2005, astro-ph/0509424.

[36]  B.Zhang,et al.  Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst? , 2006 .

[37]  Takashi Hattori,et al.  An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295 , 2006, Nature.

[38]  E. Rol,et al.  The remarkable afterglow of GRB 061007: Implications for optical flashes and GRB fireballs , 2006 .

[39]  Jason X. Prochaska,et al.  Accepted for Publication in the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 20/04/00 ON THE ABSENCE OF WIND SIGNATURES IN GRB AFTERGLOW SPECTRA: CONSTRAINTS ON THE WOLF-RAYET WINDS OF GRB PROGENITORS , 2007 .

[40]  B. L. Jensen,et al.  Supernova 2006aj and the associated X-Ray Flash 060218 , 2006 .

[41]  IoA,et al.  On the Incidence of Strong Mg II Absorbers along Gamma-Ray Burst Sight Lines , 2006 .

[42]  P. Brown,et al.  The association of GRB 060218 with a supernova and the evolution of the shock wave , 2006, Nature.

[43]  Peter Garnavich,et al.  Infrared and Optical Observations of GRB 030115 and its Extremely Red Host Galaxy: Implications for Dark Bursts , 2006, astro-ph/0608166.

[44]  E. O. Ofek,et al.  A Spectacular Radio Flare from XRF 050416a at 40 Days and Implications for the Nature of X-Ray Flashes , 2006, astro-ph/0607511.

[45]  P. Moller,et al.  Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? , 2006 .

[46]  Nathaniel R. Butler,et al.  On the Early-Time X-Ray Spectra of Swift Afterglows. I. Evidence for Anomalous Soft X-Ray Emission , 2006, astro-ph/0604083.

[47]  Jesper Sollerman,et al.  No supernovae associated with two long-duration γ-ray bursts , 2006, Nature.

[48]  M. C. Bentz,et al.  Strongly variable z = 1.48 Fe II and Mg II absorption in the spectra of z = 4.05 GRB 060206 , 2006 .

[49]  S. Savaglio,et al.  GRBs as cosmological probes—cosmic chemical evolution , 2006, astro-ph/0609489.

[50]  P. Giommi,et al.  Panchromatic study of GRB 060124: From precursor to afterglow , 2006, astro-ph/0602497.

[51]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[52]  Gemini spectroscopy of the afterglow of GRB060210 , 2006 .

[53]  Chile,et al.  A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401 , 2005, astro-ph/0510368.

[54]  A. J. Levan,et al.  Long γ-ray bursts and core-collapse supernovae have different environments , 2006, Nature.

[55]  S. B. Cenko,et al.  Spectroscopy of GRB 050505 at z = 4.275: A log N(H I) = 22.1 DLA Host Galaxy and the Nature of the Progenitor , 2006 .

[56]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[57]  E. O. Ofek,et al.  A novel explosive process is required for the γ-ray burst GRB 060614 , 2006, Nature.

[58]  D. Fugazza,et al.  An enigmatic long-lasting γ-ray burst not accompanied by a bright supernova , 2006, Nature.

[59]  Jason X. Prochaska,et al.  Dissecting the Circumstellar Environment of γ-Ray Burst Progenitors , 2006, astro-ph/0601057.

[60]  Sandra Savaglio,et al.  Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations , 2006 .

[61]  Jason X. Prochaska,et al.  On the Incidence of C IV Absorbers Along the Sight Lines to Gamma-Ray Bursts , 2007, 0705.0387.

[62]  John F. Beacom,et al.  An Unexpectedly Swift Rise in the Gamma-Ray Burst Rate , 2007, 0709.0381.

[63]  L. A. Antonelli,et al.  UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment , 2006, astro-ph/0609825.

[64]  G. Bertone,et al.  Gamma-rays from decaying dark matter , 2007, 0709.2299.

[65]  A. J. Levan,et al.  Detection of GRB 060927 at z = 5.47: Implications for the Use of Gamma-Ray Bursts as Probes of the End of the Dark Ages , 2007, 0706.1257.

[66]  M. J. Page,et al.  Dust and gas in the local environments of gamma-ray bursts , 2007 .

[67]  S. Piranomonte,et al.  Selection effects shaping the gamma ray burst redshift distributions , 2007, 0704.2189.

[68]  S. R. Kulkarni,et al.  The ERO Host Galaxy of GRB 020127: Implications for the Metallicity of GRB Progenitors , 2007 .

[69]  Sandra Savaglio,et al.  Intervening Metal Systems in GRB and QSO Sight Lines: The Mg II and C IV Question , 2007, 0705.0706.

[70]  J. Prochaska,et al.  A New Constraint on the Escape Fraction in Distant Galaxies Using γ-Ray Burst Afterglow Spectroscopy , 2007, 0707.2594.

[71]  T. Piran,et al.  Do long duration gamma ray bursts follow star formation? , 2007, astro-ph/0701194.

[72]  Jason X. Prochaska,et al.  Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .

[73]  D. B. Fox,et al.  TESTING THE POSSIBLE INTRINSIC ORIGIN OF THE EXCESS VERY STRONG Mg ii ABSORBERS ALONG GAMMA-RAY BURST LINES-OF-SIGHT , 2008, 0811.1382.

[74]  Jason X. Prochaska,et al.  A Survey for N V Absorption at z ≈ zGRB in GRB Afterglow Spectra: Clues to Gas Near the Progenitor Star , 2008, 0806.0399.

[75]  U. Chicago,et al.  On the Nature of Velocity Fields in High-z Galaxies , 2007, astro-ph/0703701.

[76]  J. Xavier Prochaska,et al.  Reconciling the Metallicity Distributions of Gamma-Ray Burst, Damped Lyα, and Lyman Break Galaxies at z ≈ 3 , 2008, Proceedings of the International Astronomical Union.

[77]  Fiona A. Harrison,et al.  GRB 070125: The First Long-Duration Gamma-Ray Burst in a Halo Environment* , 2008 .

[78]  E. Rol,et al.  GRB 070306: A Highly Extinguished Afterglow , 2008, 0803.4017.

[79]  J. P. U. Fynbo,et al.  DUST EXTINCTION IN HIGH-z GALAXIES WITH GAMMA-RAY BURST AFTERGLOW SPECTROSCOPY: THE 2175 Å FEATURE AT z = 2.45 , 2008, 0810.2897.

[80]  D. Fugazza,et al.  Probing the complex environments of GRB host galaxies and intervening systems: high resolution spectroscopy of GRB050922C , 2008 .

[81]  A. J. Levan,et al.  GRB 080913 AT REDSHIFT 6.7 , 2008, 0810.2314.

[82]  S. Ellison,et al.  A search for damped Lyman α systems towards radio‐loud quasars I: the optical survey* , 2008, 0805.2940.

[83]  Hsiao-Wen Chen,et al.  Escape of Ionizing Radiation from High-Redshift Galaxies , 2007, 0707.0879.

[84]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[85]  S. Savaglio,et al.  The 2175 Å Dust Feature in a Gamma-Ray Burst Afterglow at Redshift 2.45 , 2008, 0805.2824.

[86]  Alain Smette,et al.  High-Ion Absorption in Seven GRB Host Galaxies at z=2-4: Evidence for both Circumburst Plasma and , 2008, 0809.3247.

[87]  E. O. Ofek,et al.  THE HOST GALAXIES OF SWIFT DARK GAMMA-RAY BURSTS: OBSERVATIONAL CONSTRAINTS ON HIGHLY OBSCURED AND VERY HIGH REDSHIFT GRBs , 2009, 0905.0001.

[88]  Takashi Hattori,et al.  No Evidence for Variability of Intervening Absorption Lines toward GRB 060206: Implications for the Mg ii Incidence Problem , 2009 .

[89]  C. Guidorzi,et al.  THE PROMPT, HIGH-RESOLUTION SPECTROSCOPIC VIEW OF THE “NAKED-EYE” GRB080319B , 2008, 0804.2141.

[90]  D. L. Starr,et al.  OBSERVATIONS OF THE NAKED-EYE GRB 080319B: IMPLICATIONS OF NATURE'S BRIGHTEST EXPLOSION , 2008, 0803.3215.

[91]  et al,et al.  X-shooter: A medium-resolution, wide-band spectrograph for the VLT , 2008, 0803.0609.

[92]  A. Fruchter,et al.  A COMPARISON OF THE AFTERGLOWS OF SHORT- AND LONG-DURATION GAMMA-RAY BURSTS , 2008, 0806.3607.

[93]  W. T. Vestrand,et al.  GAMMA-RAY BURST AT THE EXTREME: “THE NAKED-EYE BURST” GRB 080319B , 2008, 0810.2481.

[94]  Copenhagen,et al.  Statistics and characteristics of MgII absorbers along GRB lines of sight observed with VLT-UVES , 2009, 0906.3269.

[95]  C. Guidorzi,et al.  UVES/VLT high resolution absorption spectroscopy of the GRB 080330 afterglow: a study of the GRB host galaxy and intervening absorbers , 2009, 0906.3187.

[96]  J. Prochaska,et al.  ON THE ABSENCE OF HIGH METALLICITY–HIGH COLUMN DENSITY DAMPED Lyα SYSTEMS: MOLECULE FORMATION IN A TWO-PHASE INTERSTELLAR MEDIUM , 2009, 0906.0983.

[97]  J. P. U. Fynbo,et al.  Physical conditions in high-redshift GRB-DLA absorbers observed with VLT/UVES: implications for molecular hydrogen searches , 2009, 0907.1057.

[98]  P. Noterdaeme,et al.  Evolution of the cosmological mass density of neutral gas from Sloan Digital Sky Survey II - Data Release 7 , 2009, 0908.1574.

[99]  J. X. Prochaska,et al.  HIGH-REDSHIFT STARBURSTING DWARF GALAXIES REVEALED BY γ-RAY BURST AFTERGLOWS , 2008, 0809.2608.

[100]  Observatoire de Geneve,et al.  THE FIRST POSITIVE DETECTION OF MOLECULAR GAS IN A GRB HOST GALAXY , 2009, 0901.0556.

[101]  M. J. Page,et al.  A statistical study of gamma-ray burst afterglows measured by the Swift Ultraviolet Optical Telescope , 2009, 0901.3597.

[102]  J. X. Prochaska,et al.  THE DISCOVERY OF VIBRATIONALLY EXCITED H2 IN THE MOLECULAR CLOUD NEAR GRB 080607 , 2009, 0907.1285.

[103]  R. Jain,et al.  Spectropolarimetery of umbral fine structures from Hinode: evidence for magnetoconvection , 2008, 0811.1722.