STIM1 Controls Neuronal Ca2+ Signaling, mGluR1-Dependent Synaptic Transmission, and Cerebellar Motor Behavior

In central mammalian neurons, activation of metabotropic glutamate receptor type1 (mGluR1) evokes a complex synaptic response consisting of IP3 receptor-dependent Ca(2+) release from internal Ca(2+) stores and a slow depolarizing potential involving TRPC3 channels. It is largely unclear how mGluR1 is linked to its downstream effectors. Here, we explored the role of stromal interaction molecule 1 (STIM1) in regulating neuronal Ca(2+) signaling and mGluR1-dependent synaptic transmission. By analyzing mouse cerebellar Purkinje neurons, we demonstrate that STIM1 is an essential regulator of the Ca(2+) level in neuronal endoplasmic reticulum Ca(2+) stores. Both mGluR1-dependent synaptic potentials and IP3 receptor-dependent Ca(2+) signals are strongly attenuated in the absence of STIM1. Furthermore, the Purkinje neuron-specific deletion of Stim1 causes impairments in cerebellar motor behavior. Together, our results demonstrate that in the mammalian nervous system STIM1 is a key regulator of intracellular Ca(2+) signaling, metabotropic glutamate receptor-dependent synaptic transmission, and motor coordination.

[1]  P. Conn,et al.  Metabotropic glutamate receptors: physiology, pharmacology, and disease. , 2010, Annual review of pharmacology and toxicology.

[2]  Richard F. Thompson,et al.  Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Galphaq. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[3]  K. Oritani,et al.  Identification of stromal cell products that interact with pre-B cells , 1996, The Journal of cell biology.

[4]  J. Garthwaite,et al.  Synaptic activation of metabotropic glutamate receptors in the parallel Fibre-Purkinje cell pathway in rat cerebellar slices , 1994, Neuroscience.

[5]  A. Konnerth,et al.  Distinct Roles of Gαq and Gα11 for Purkinje Cell Signaling and Motor Behavior , 2004, The Journal of Neuroscience.

[6]  Christian Lüscher,et al.  Group 1 mGluR-Dependent Synaptic Long-Term Depression: Mechanisms and Implications for Circuitry and Disease , 2010, Neuron.

[7]  D. Ogden,et al.  Kinetic, pharmacological and activity‐dependent separation of two Ca2+ signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones , 2006, The Journal of physiology.

[8]  J. Kuźnicki,et al.  Expression of STIM1 in brain and puncta-like co-localization of STIM1 and ORAI1 upon depletion of Ca2+ store in neurons , 2009, Neurochemistry International.

[9]  J. Kuźnicki,et al.  Differential Roles for STIM1 and STIM2 in Store-Operated Calcium Entry in Rat Neurons , 2011, PloS one.

[10]  Tobias Meyer,et al.  STIM Is a Ca 2+ Sensor Essential for Ca 2+ -Store-Depletion-Triggered Ca 2+ Influx , 2005 .

[11]  D. Linden,et al.  Mechanisms underlying cerebellar motor deficits due to mGluR1‐autoantibodies , 2003, Annals of neurology.

[12]  Tao Xu,et al.  Aggregation of STIM1 underneath the plasma membrane induces clustering of Orai1. , 2006, Biochemical and biophysical research communications.

[13]  K. Mikoshiba,et al.  Ataxia and epileptic seizures in mice lacking type 1 inositol 1,4,5-trisphosphate receptor , 1996, Nature.

[14]  Philip Smith,et al.  Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. , 2001, The Biochemical journal.

[15]  A. Konnerth,et al.  Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons , 1995, Nature.

[16]  A. Konnerth,et al.  Distinct roles of Galpha(q) and Galpha11 for Purkinje cell signaling and motor behavior. , 2004, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  JoAnn Buchanan,et al.  The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER–plasma membrane junctions , 2006, The Journal of cell biology.

[18]  H. Kahr,et al.  Dynamic Coupling of the Putative Coiled-coil Domain of ORAI1 with STIM1 Mediates ORAI1 Channel Activation* , 2008, Journal of Biological Chemistry.

[19]  Thomas S. Otis,et al.  Climbing Fiber Activation of Metabotropic Glutamate Receptors on Cerebellar Purkinje Neurons , 2002, Neuron.

[20]  重本 隆一 Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system : an in situ hybridization study in adult and developing rat , 1994 .

[21]  Arthur Konnerth,et al.  A new class of synaptic response involving calcium release in dendritic spines , 1998, Nature.

[22]  Elizabeth D. Covington,et al.  STIM1 Clusters and Activates CRAC Channels via Direct Binding of a Cytosolic Domain to Orai1 , 2009, Cell.

[23]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[24]  Joseph P. Yuan,et al.  STIM1 heteromultimerizes TRPC channels to determine their function as store-operated channels , 2007, Nature Cell Biology.

[25]  P. Strata,et al.  Characterization of the mGluR(1)-mediated electrical and calcium signaling in Purkinje cells of mouse cerebellar slices. , 2001, Journal of neurophysiology.

[26]  A. Konnerth,et al.  Synaptic currents in cerebellar Purkinje cells. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Fisher,et al.  A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice , 2009, Proceedings of the National Academy of Sciences.

[28]  George J. Augustine,et al.  Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites , 1998, Nature.

[29]  J. Eu,et al.  STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle , 2008, Nature Cell Biology.

[30]  A Konnerth,et al.  Release and sequestration of calcium by ryanodine‐sensitive stores in rat hippocampal neurones , 1997, The Journal of physiology.

[31]  A. Konnerth,et al.  Quantitative single-cell RT-PCR and Ca2+ imaging in brain slices , 2006, Pflügers Archiv.

[32]  C. Croce,et al.  Exon structure and promoter identification of STIM1 (alias GOK), a human gene causing growth arrest of the human tumor cell lines G401 and RD , 1999, Cytogenetic and Genome Research.

[33]  Bogdan Tanasa,et al.  A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function , 2006, Nature.

[34]  J. Soboloff,et al.  Orai1 and STIM Reconstitute Store-operated Calcium Channel Function* , 2006, Journal of Biological Chemistry.

[35]  S. Tonegawa,et al.  Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice , 1994, Cell.

[36]  Y. Gwack,et al.  Orai1 is an essential pore subunit of the CRAC channel , 2006, Nature.

[37]  Michael D. Cahalan,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[38]  JoAnn Buchanan,et al.  Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane , 2006, The Journal of cell biology.

[39]  M. Kano,et al.  Local Calcium Release in Dendritic Spines Required for Long-Term Synaptic Depression , 2000, Neuron.

[40]  Masahiko Watanabe,et al.  Roles of phospholipase Cβ4 in synapse elimination and plasticity in developing and mature cerebellum , 2001, Molecular Neurobiology.

[41]  Shenyuan L. Zhang,et al.  Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai , 2006, Nature.

[42]  S. Wagner,et al.  STIM1, an essential and conserved component of store-operated Ca2+ channel function , 2005, The Journal of cell biology.

[43]  J. Kuźnicki,et al.  Immunolocalization of STIM1 in the mouse brain. , 2009, Acta neurobiologiae experimentalis.

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  T. Hirano,et al.  Essential function for the calcium sensor STIM1 in mast cell activation and anaphylactic responses , 2008, Nature Immunology.

[46]  K. Mikoshiba,et al.  Type 1 Inositol 1,4,5-Trisphosphate Receptor Is Required for Induction of Long-Term Depression in Cerebellar Purkinje Neurons , 1998, The Journal of Neuroscience.

[47]  M. Dziadek,et al.  Biochemical properties and cellular localisation of STIM proteins. , 2007, Cell calcium.

[48]  D Yanagihara,et al.  mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. , 2000, Science.

[49]  E. Clementi,et al.  Receptor-activated Ca2+ influx. Two independently regulated mechanisms of influx stimulation coexist in neurosecretory PC12 cells. , 1992, The Journal of biological chemistry.

[50]  M. Frosch,et al.  Presenilin-Mediated Modulation of Capacitative Calcium Entry , 2000, Neuron.

[51]  P Strata,et al.  Postsynaptic current mediated by metabotropic glutamate receptors in cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[52]  J. Putney,et al.  TRPC channels function independently of STIM1 and Orai1 , 2009, The Journal of physiology.

[53]  D. Armstrong,et al.  Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels , 2008, Proceedings of the National Academy of Sciences.

[54]  Joseph P. Yuan,et al.  STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction. , 2008, Molecular cell.

[55]  Masahiko Watanabe,et al.  Glutamate receptor δ2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells , 2011, Neuroscience Research.

[56]  S. Nakanishi,et al.  Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: An in situ hybridization study in adult and developing rat , 1992, The Journal of comparative neurology.

[57]  Y. Usachev,et al.  Ca2+ influx in resting rat sensory neurones that regulates and is regulated by ryanodine‐sensitive Ca2+ stores , 1999, The Journal of physiology.

[58]  Marc Freichel,et al.  TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination , 2008, Neuron.

[59]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[60]  A. Bouron Activation of a capacitative Ca2+ entry pathway by store depletion in cultured hippocampal neurones , 2000, FEBS letters.

[61]  J. Eilers,et al.  STIM2 Regulates Capacitive Ca2+ Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death , 2009, Science Signaling.

[62]  J. Eilers,et al.  STIM 2 Regulates Capacitive Ca 2 + Entry in Neurons and Plays a Key Role in Hypoxic Neuronal Cell Death , 2009 .

[63]  W. Regehr,et al.  Determinants of the Time Course of Facilitation at the Granule Cell to Purkinje Cell Synapse , 1996, The Journal of Neuroscience.

[64]  Masao Ito Cerebellar circuitry as a neuronal machine , 2006, Progress in Neurobiology.

[65]  Tobias Meyer,et al.  STIM Is a Ca2+ Sensor Essential for Ca2+-Store-Depletion-Triggered Ca2+ Influx , 2005, Current Biology.

[66]  J. Billingsley,et al.  CRACM1 Multimers Form the Ion-Selective Pore of the CRAC Channel , 2006, Current Biology.

[67]  Y. Gwack,et al.  Dynamic Assembly of TRPC1-STIM1-Orai1 Ternary Complex Is Involved in Store-operated Calcium Influx , 2007, Journal of Biological Chemistry.

[68]  R. Williams,et al.  Stromal interaction molecule 1 (STIM1), a transmembrane protein with growth suppressor activity, contains an extracellular SAM domain modified by N-linked glycosylation. , 2002, Biochimica et biophysica acta.

[69]  M. Glitsch Activation of native TRPC3 cation channels by phospholipase D , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[70]  Rebecca R. Boyles,et al.  Large Store-operated Calcium Selective Currents Due to Co-expression of Orai1 or Orai2 with the Intracellular Calcium Sensor, Stim1* , 2006, Journal of Biological Chemistry.

[71]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[72]  Rodolfo Llinás,et al.  P-type calcium channels in the somata and dendrites of adult cerebellar purkinje cells , 1992, Neuron.