A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the mATG8-conjugation machinery

[1]  J. Norman,et al.  PINK1 drives production of mtDNA-containing extracellular vesicles to promote invasiveness , 2021, The Journal of cell biology.

[2]  V. Pascual,et al.  Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE , 2021, Cell.

[3]  B. Kuster,et al.  Stress-primed secretory autophagy promotes extracellular BDNF maturation by enhancing MMP9 secretion , 2021, Nature Communications.

[4]  F. Perez,et al.  Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9 , 2021, Nature Communications.

[5]  M. Zeviani,et al.  Neural stem cells traffic functional mitochondria via extracellular vesicles , 2021, PLoS biology.

[6]  Yohan Kim,et al.  Mitovesicles are a novel population of extracellular vesicles of mitochondrial origin altered in Down syndrome , 2021, Science Advances.

[7]  R. Cerione,et al.  Isolation and characterization of extracellular vesicles produced by cell lines , 2021, STAR protocols.

[8]  Mark R. Marten,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 , 2021, Autophagy.

[9]  S. Koh,et al.  Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes , 2020, Translational Neurodegeneration.

[10]  M. Koike,et al.  Alternative mitochondrial quality control mediated by extracellular release , 2020, Autophagy.

[11]  S. Honda,et al.  Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration , 2020, Nature Communications.

[12]  Min Goo Lee,et al.  Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion , 2020, Autophagy.

[13]  A. Ballabio,et al.  LC3 lipidation is essential for TFEB activation during the lysosomal damage response to kidney injury , 2020, Nature Cell Biology.

[14]  R. Swerdlow,et al.  Detection of mitochondria-pertinent components in exosomes. , 2020, Mitochondrion.

[15]  D. Philpott,et al.  Mitophagy pathways in health and disease , 2020, The Journal of cell biology.

[16]  S. Priori,et al.  A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart , 2020, Cell.

[17]  Amber L. Simpson,et al.  Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers , 2020, Cell.

[18]  S. Bratman,et al.  Bioactive DNA from extracellular vesicles and particles , 2020, Cell Death & Disease.

[19]  Keiji Tanaka,et al.  Critical role of mitochondrial ubiquitination and the OPTN–ATG9A axis in mitophagy , 2020, The Journal of cell biology.

[20]  Ying Li,et al.  A Translocation Pathway for Vesicle-Mediated Unconventional Protein Secretion , 2020, Cell.

[21]  G. Stevanin,et al.  Impairment of Lysosome Function and Autophagy in Rare Neurodegenerative Diseases , 2020, Journal of molecular biology.

[22]  Alejandro Lucia,et al.  Chronic inflammation in the etiology of disease across the life span , 2019, Nature Medicine.

[23]  V. Deretic,et al.  Mammalian Atg8 proteins regulate lysosome and autolysosome biogenesis through SNAREs , 2019, The EMBO journal.

[24]  James H. Stronge,et al.  Selective Autophagy of Mitochondria on a Ubiquitin-Endoplasmic-Reticulum Platform , 2019, Developmental cell.

[25]  L. Montermini,et al.  Mapping Subpopulations of Cancer Cell-Derived Extracellular Vesicles and Particles by Nano-Flow Cytometry. , 2019, ACS nano.

[26]  G. Dorn,et al.  Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration , 2019, Nature Neuroscience.

[27]  Grégory Lavieu,et al.  Content release of extracellular vesicles in a cell‐free extract , 2019, FEBS letters.

[28]  Lin Li,et al.  A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy , 2019, Cell.

[29]  D. Green,et al.  LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease , 2019, Cell.

[30]  M. Gale,et al.  Interleukin-1β Induces mtDNA Release to Activate Innate Immune Signaling via cGAS-STING. , 2019, Molecular cell.

[31]  G. Schiavo,et al.  Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 during Selective Autophagy , 2019, Molecular cell.

[32]  J. New,et al.  Autophagy-dependent secretion: mechanism, factors secreted, and disease implications , 2019, Autophagy.

[33]  L. Tang,et al.  Effect of a Single Bout of Exercise on Autophagy Regulation in Skeletal Muscle of High-Fat High-Sucrose Diet-Fed Mice , 2019, Journal of obesity & metabolic syndrome.

[34]  Jaehoon Chung,et al.  Subtyping of circulating exosome-bound amyloid β reflects brain plaque deposition , 2019, Nature Communications.

[35]  M. Z. Cader,et al.  Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease , 2019, Nature Neuroscience.

[36]  S. Ichinose,et al.  An alternative mitophagy pathway mediated by Rab9 protects the heart against ischemia , 2019, The Journal of clinical investigation.

[37]  M. Lazarou,et al.  LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy , 2019, Nature Communications.

[38]  G. Kroemer,et al.  Biological Functions of Autophagy Genes: A Disease Perspective , 2019, Cell.

[39]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[40]  M. Fukuda,et al.  Revisiting Rab7 Functions in Mammalian Autophagy: Rab7 Knockout Studies , 2018, Cells.

[41]  H. Paulson,et al.  PINK1-dependent mitophagy is driven by the UPS and can occur independently of LC3 conversion , 2018, Cell Death & Differentiation.

[42]  H. Cai,et al.  Parkin and PINK1 mitigate STING-induced inflammation , 2018, Nature.

[43]  Xingdong Zhou,et al.  Chloroquine inhibits autophagic flux by decreasing autophagosome-lysosome fusion , 2018, Autophagy.

[44]  F. Sánchez‐Madrid,et al.  Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts , 2018, Nature Communications.

[45]  T. Dokland,et al.  Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells☆ , 2018, Redox biology.

[46]  M. Vila,et al.  Mitochondrial Quality Control in Neurodegenerative Diseases: Focus on Parkinson's Disease and Huntington's Disease , 2018, Front. Neurosci..

[47]  S. Gygi,et al.  Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics. , 2018, Molecular cell.

[48]  Thomas M. Durcan,et al.  Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy , 2018, eLife.

[49]  J. Bangsbo,et al.  Exercise and exercise training‐induced increase in autophagy markers in human skeletal muscle , 2018, Physiological reports.

[50]  M. Kyba,et al.  ULK1 phosphorylates Ser30 of BECN1 in association with ATG14 to stimulate autophagy induction , 2018, Autophagy.

[51]  J. Harper,et al.  Building and decoding ubiquitin chains for mitophagy , 2018, Nature Reviews Molecular Cell Biology.

[52]  J. Fessel,et al.  Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism , 2017, PloS one.

[53]  L. Norton,et al.  Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer , 2017, Proceedings of the National Academy of Sciences.

[54]  Taki Nishimura,et al.  Autophagosome formation is initiated at phosphatidylinositol synthase‐enriched ER subdomains , 2017, The EMBO journal.

[55]  Prashant Mishra,et al.  Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor , 2017, Cell.

[56]  D. Hall,et al.  C. elegans Neurons Jettison Protein Aggregates and Mitochondria Under Neurotoxic Stress , 2017, Nature.

[57]  K. Lidke,et al.  Dedicated SNAREs and specialized TRIM cargo receptors mediate secretory autophagy , 2017, The EMBO journal.

[58]  Masato Koike,et al.  The ATG conjugation systems are important for degradation of the inner autophagosomal membrane , 2016, Science.

[59]  G. Ramm,et al.  Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation , 2016, The Journal of cell biology.

[60]  M. Lazarou,et al.  Deciphering the Molecular Signals of PINK1/Parkin Mitophagy. , 2016, Trends in cell biology.

[61]  T. Oka,et al.  Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy* , 2016, The Journal of Biological Chemistry.

[62]  Sebastian A. Wagner,et al.  Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria , 2016, Proceedings of the National Academy of Sciences.

[63]  D. Voytas,et al.  The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14 , 2016, Autophagy.

[64]  C. Théry,et al.  Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes , 2016, Proceedings of the National Academy of Sciences.

[65]  K. Guan,et al.  Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming , 2015, Nature Cell Biology.

[66]  Simon C Watkins,et al.  Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs , 2015, Nature Communications.

[67]  J. Burman,et al.  The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy , 2015, Nature.

[68]  K. Hashimoto,et al.  Extrusion of mitochondrial contents from lipopolysaccharide-stimulated cells: Involvement of autophagy , 2015, Autophagy.

[69]  D. Green,et al.  Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins , 2015, Nature Cell Biology.

[70]  J. Harper,et al.  Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response , 2015, Proceedings of the National Academy of Sciences.

[71]  R. Means,et al.  Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response , 2014, Nature.

[72]  T. Taniguchi,et al.  Apoptotic Caspases Prevent the Induction of Type I Interferons by Mitochondrial DNA , 2014, Cell.

[73]  Seamus J. Martin,et al.  Parkin sensitizes toward apoptosis induced by mitochondrial depolarization through promoting degradation of Mcl-1. , 2014, Cell reports.

[74]  N. Mizushima,et al.  Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells , 2014, Journal of Cell Science.

[75]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[76]  Michael I. Wilson,et al.  WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1 , 2014, Molecular cell.

[77]  R. Candau,et al.  Autophagy and protein turnover signaling in slow-twitch muscle during exercise. , 2014, Medicine and science in sports and exercise.

[78]  S. Honda,et al.  Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes , 2014, Nature Communications.

[79]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[80]  Hakho Lee,et al.  Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor , 2014, Nature Biotechnology.

[81]  X. Liang,et al.  Suppression of autophagy by chloroquine sensitizes 5-fluorouracil-mediated cell death in gallbladder carcinoma cells , 2014, Cell & Bioscience.

[82]  R. Roos,et al.  The V471A Polymorphism in Autophagy-Related Gene ATG7 Modifies Age at Onset Specifically in Italian Huntington Disease Patients , 2013, PloS one.

[83]  R. Hawley,et al.  A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson's disease , 2013, Neuroscience Letters.

[84]  R. Zubarev The challenge of the proteome dynamic range and its implications for in‐depth proteomics , 2013, Proteomics.

[85]  R. Hawley,et al.  Genetic analysis of the ATG7 gene promoter in sporadic Parkinson's disease , 2013, Neuroscience Letters.

[86]  Xiao-Ming Yin,et al.  Mitophagy: mechanisms, pathophysiological roles, and analysis , 2012, Biological chemistry.

[87]  Young Sang Kim,et al.  Autophagic response to a single bout of moderate exercise in murine skeletal muscle , 2012, Journal of Physiology and Biochemistry.

[88]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[89]  N. Mizushima,et al.  Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy , 2012, Journal of Cell Science.

[90]  Herman I. May,et al.  Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis , 2012, Nature.

[91]  V. Deretic,et al.  Autophagy‐based unconventional secretory pathway for extracellular delivery of IL‐1β , 2011, The EMBO journal.

[92]  N. Myeku,et al.  Dynamics of the Degradation of Ubiquitinated Proteins by Proteasomes and Autophagy , 2011, The Journal of Biological Chemistry.

[93]  N. Mizushima,et al.  Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane*♦ , 2011, The Journal of Biological Chemistry.

[94]  Sonja Hess,et al.  Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy , 2011, Human molecular genetics.

[95]  Xiao-Ming Yin,et al.  Dissecting the dynamic turnover of GFP-LC3 in the autolysosome , 2011, Autophagy.

[96]  L. Tong,et al.  Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7 , 2010, Human Genetics.

[97]  R. Youle,et al.  Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells , 2010, Proceedings of the National Academy of Sciences.

[98]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[99]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[100]  K. Otsu,et al.  Discovery of Atg5/Atg7-independent alternative macroautophagy , 2009, Nature.

[101]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[102]  Gareth Griffiths,et al.  Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum , 2008, The Journal of cell biology.

[103]  T. Noda,et al.  The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. , 2008, Molecular biology of the cell.

[104]  F. Inagaki,et al.  Structure of Atg5·Atg16, a Complex Essential for Autophagy* , 2007, Journal of Biological Chemistry.

[105]  Aled Clayton,et al.  Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids , 2006, Current protocols in cell biology.

[106]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[107]  T. Ueno,et al.  HsAtg4B/HsApg4B/Autophagin-1 Cleaves the Carboxyl Termini of Three Human Atg8 Homologues and Delipidates Microtubule-associated Protein Light Chain 3- and GABAA Receptor-associated Protein-Phospholipid Conjugates* , 2004, Journal of Biological Chemistry.

[108]  N. Mizushima,et al.  Two ubiquitin-like conjugation systems essential for autophagy. , 2004, Seminars in cell & developmental biology.

[109]  V. Lelyveld,et al.  A Single Protease, Apg4B, Is Specific for the Autophagy-related Ubiquitin-like Proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L* , 2003, Journal of Biological Chemistry.

[110]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[111]  Takeshi Noda,et al.  Formation Process of Autophagosome Is Traced with Apg8/Aut7p in Yeast , 1999, The Journal of cell biology.

[112]  G. Chamberlain,et al.  Induction , 2015, A Warning for Fair Women.

[113]  C. Kahn,et al.  A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. , 1998, Molecular cell.

[114]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[115]  Han-Ming Shen,et al.  Post-translational Modifications of Key Machinery in the Control of Mitophagy. , 2019, Trends in biochemical sciences.

[116]  Marisa Ponpuak,et al.  Secretory autophagy. , 2015, Current opinion in cell biology.