Poly(N-vinylcaprolactam), a comprehensive review on a thermoresponsive polymer becoming popular

Abstract Poly( N -vinylcaprolactam) (PNVCL) is a temperature-responsive polymer, only second to poly( N -isopropylacrylamide), the most popular temperature-responsive polymer. Its applications include its use in cosmetics, as an anticlogging agent in pipelines and increasingly, in biomedical applications. This review highlights the controlled synthesis of PNVCL in different architectures: random copolymers, block copolymers, graft copolymers, nanogels, and their applications in the biomedical field, e.g., drug delivery, cell detachment, entrapment of enzymes, tissue engineering, among others. Emerging applications in areas that are expected to grow are also presented where PNVCL will play a pivotal roll: nanotechnology and the environment.

[1]  V. Tsukruk,et al.  Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies , 2010 .

[2]  G. Sukhodolskaya,et al.  Poly-N-vinylcaprolactam gel: A novel matrix for entrapment of microorganisms , 1993 .

[3]  Lifen Zhang,et al.  Thermo‐sensitive amphiphilic poly(N‐vinylcaprolactam) copolymers: synthesis and solution properties , 2009 .

[4]  Shaofeng Lou,et al.  Temperature/pH dual responsive microgels of crosslinked poly(N‐vinylcaprolactam‐co‐undecenoic acid) as biocompatible materials for controlled release of doxorubicin , 2014 .

[5]  S. Rimmer,et al.  Fluorescence investigations of the conformational behaviour of Poly(N-vinylcaprolactam) , 2006 .

[6]  A. Pich,et al.  Preparation of PEGMA-functionalized latex particles. 2. System styrene/N-vinylcaprolactam , 2003 .

[7]  B. Mallikarjuna,et al.  Novel thermo/pH sensitive nanogels composed from poly(N-vinylcaprolactam) for controlled release of an anticancer drug. , 2013, Colloids and surfaces. B, Biointerfaces.

[8]  B. Mattiasson,et al.  Affinity thermoprecipitatin: Contribution of the efficiency of ligand–protein interaction and access of the ligand , 1993, Biotechnology and bioengineering.

[9]  W. Richtering,et al.  Behavior of temperature-responsive copolymer microgels at the oil/water interface. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[10]  G. V. Nazarov,et al.  On the Possibility of Using Poly(N-Vinylcaprolactam) for the Determination of Some Drugs in Aqueous Media , 2003, Pharmaceutical Chemistry Journal.

[11]  V. D. Pautov,et al.  Complexing properties and structural characteristics of thermally sensitive copolymers of N-vinylpyrrolidone and N-vinylcaprolactam , 2001 .

[12]  V. Boyko,et al.  Chain dynamics in microgels: poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) microgels as examples. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[13]  M. Prabaharan,et al.  Thermosensitive micelles based on folate-conjugated poly(N-vinylcaprolactam)-block-poly(ethylene glycol) for tumor-targeted drug delivery. , 2009, Macromolecular bioscience.

[14]  V. Kozlovskaya,et al.  Temperature-responsive properties of poly(N-vinylcaprolactam) multilayer hydrogels in the presence of Hofmeister anions , 2014 .

[15]  S. Kuptsova,et al.  Stabilization of proteases by entrapment in a new composite hydrogel , 1996, Applied biochemistry and biotechnology.

[16]  Christine Steinbach,et al.  Combination of Natural and Thermosensitive Polymers in Flocculation of Fine Silica Dispersions , 2013 .

[17]  J. Spĕvác̆ek,et al.  Structures and interactions in collapsed hydrogels of thermoresponsive interpenetrating polymer networks , 2015, Colloid and Polymer Science.

[18]  T. Aminabhavi,et al.  A Novel Method to Prepare 5-Fluorouracil, an Anti-cancer Drug, Loaded Microspheres from Poly(N-vinyl caprolactam-co-acrylamide) and Controlled Release Studies , 2010 .

[19]  Li‐Ming Zhang,et al.  Phase-transition and aggregation characteristics of a thermoresponsive dextran derivative in aqueous solutions. , 2006, Carbohydrate research.

[20]  E. Merrill,et al.  Protein Adsorption on Poly(ethylene oxide)-Grafted Silicon Surfaces , 1997 .

[21]  A. Tager,et al.  Thermodynamic study of poly(N-vinyl caprolactam) hydration at temperatures close to lower critical solution temperature , 1993 .

[22]  Peiyi Wu,et al.  The effect of added gold nanoparticles on the volume phase transition behavior for PVCL-based microgels , 2014 .

[23]  S. Kuptsova,et al.  Proteases Entrapped in Hydrogels Based on Poly(N-Vinyl Caprolactam) as Promising Biocatalysts in Water/Organic Systems , 2000 .

[24]  V. Boyko,et al.  Structure of Thermosensitive Poly(N-vinylcaprolactam-co-N-vinylpyrrolidone) Microgels , 2005 .

[25]  Controlled release studies of 5-Fluorouracil through poly (vinyl caprolactum-co-vinyl acetate) microspheres , 2010 .

[26]  E. Markvicheva,et al.  A novel technique for entrapment of hybridoma cells in synthetic thermally reversible polymers , 1991 .

[27]  H. Tenhu,et al.  Phase separation of aqueous poly(2-dimethylaminoethyl methacrylate-block-N-vinylcaprolactams). , 2014, The journal of physical chemistry. B.

[28]  V. O. Kudyshkin,et al.  Rheological properties of solutions of chitosan and its graft copolymer with N-vinylcaprolactam , 2010 .

[29]  B. Mattiasson,et al.  Synthesis of N-vinylcaprolactam polymers in water-containing media , 2000 .

[30]  K. K. Kalnin’sh,et al.  Structural transformations and water associate interactions in poly-N-vinylcaprolactam–water system , 1999 .

[31]  Peiyi Wu,et al.  LCST transition of PNIPAM-b-PVCL in water: cooperative aggregation of two distinct thermally responsive segments. , 2014, Soft matter.

[32]  J. Darr,et al.  Measure of microhardness, fracture toughness and flexural strength of N-vinylcaprolactam (NVC)-containing glass-ionomer dental cements. , 2010, Dental materials : official publication of the Academy of Dental Materials.

[33]  M. Riekkola,et al.  Stability and thermosensitive properties of various poly (N-vinylcaprolactam) microgels , 2002 .

[34]  K. Neoh,et al.  Hyperbranched polycaprolactone-click-poly(N-vinylcaprolactam) amphiphilic copolymers and their applications as temperature-responsive membranes. , 2014, Journal of materials chemistry. B.

[35]  C. Chu,et al.  Cationic poly(VCL–AETA) hydrogels and ovalbumin (OVA) release in vitro , 2008, Journal of materials science. Materials in medicine.

[36]  Cai‐Feng Wang,et al.  Facile access to poly(NMA-co-VCL) hydrogels via long range laser ignited frontal polymerization , 2013 .

[37]  V. A. Kuznetsov,et al.  Flocculation of a Synthetic Rubber Latex with Homopolymers and Copolymers of N-Vinylcaprolactam and N-Vinylimidazoles , 2003 .

[38]  Á. Licea-Claveríe,et al.  Nanogels of Poly(N-Vinylcaprolactam) Core and Polyethyleneglycol Shell by Surfactant Free Emulsion Polymerization , 2014 .

[39]  J. Forcada,et al.  Synthesis strategies to incorporate acrylic acid into N-vinylcaprolactam-based microgels† , 2011 .

[40]  F. Lynen,et al.  Thermoresponsive Poly(N-vinylcaprolactam) as Stationary Phase for Aqueous and Green Liquid Chromatography , 2010 .

[41]  M. Quesada-Pérez,et al.  Soft nanoparticles (thermo-responsive nanogels and bicelles) with biotechnological applications: from synthesis to simulation through colloidal characterization , 2011 .

[42]  J. Forcada,et al.  Optimized buffered polymerizations to produce N-vinylcaprolactam-based microgels , 2009 .

[43]  A. Khokhlov,et al.  Conformation-Dependent Sequence Design (Engineering) of AB Copolymers , 1999 .

[44]  L. Shao,et al.  RAFT polymerization of N-vinylcaprolactam and effects of the end group on the thermal response of poly(N-vinylcaprolactam) , 2012 .

[45]  Guolin Zhang,et al.  Synthesis and self-assembly of new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) block copolymers via the combination of ring-opening polymerization and click chemistry , 2013, Journal of Polymer Research.

[46]  Jae Bem You,et al.  Initiated chemical vapor deposition of thermoresponsive poly(N-vinylcaprolactam) thin films for cell sheet engineering. , 2013, Acta biomaterialia.

[47]  Guolin Zhang,et al.  Synthesis and self-assembly of a new amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) block copolymer , 2013, Polymer Bulletin.

[48]  A. Khokhlov,et al.  Slightly crosslinked poly(N‐vinylcaprolactam) gels as the media for growth of copper(II) sulfate pentahydrate crystals , 2001 .

[49]  H. Deng,et al.  Radiation polymerization of thermo-sensitive poly (N-vinylcaprolactam) , 2002 .

[50]  A. Pich,et al.  Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 1—synthesis and characterization , 2003 .

[51]  H. Tenhu,et al.  Formation of Colloidally Stable Phase Separated Poly(N-vinylcaprolactam) in Water: A Study by Dynamic Light Scattering, Microcalorimetry, and Pressure Perturbation Calorimetry , 2004 .

[52]  Christopher Branford-White,et al.  Optimization of adsorption conditions of BSA on thermosensitive magnetic composite particles using response surface methodology. , 2011, Colloids and surfaces. B, Biointerfaces.

[53]  B. Mattiasson,et al.  Affinity thermoprecipitation of trypsin using soybean trypsin inhibitor conjugated with a thermo-reactive polymer, poly(N-vinyl caprolactam) , 1992 .

[54]  P. Sudhakar,et al.  Synthesis and Characterization of biodegradable Poly (Vinyl caprolactam) grafted on to sodium alginate and its microgels for controlled release studies of an anticancer drug , 2013 .

[55]  C. Jérôme,et al.  Gold nanorods coated with a thermo-responsive poly(ethylene glycol)-b-poly(N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared-triggered release , 2014 .

[56]  K. Mah,et al.  Paper-based composite lyotropic salt-responsive membranes for chromatographic separation of proteins , 2010 .

[57]  E. Fortunati,et al.  Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose: a green approach to thermoresponsive hydrogels , 2013, Cellulose.

[58]  Ahmed I. Abdelrahman,et al.  Synthesis and mass cytometric analysis of lanthanide-encoded polyelectrolyte microgels. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[59]  Sejal Shah,et al.  Melt extrusion with poorly soluble drugs. , 2013, International journal of pharmaceutics.

[60]  L. Rumsh,et al.  Immobilization of proteases in composite hydrogel based on poly(N-vinyl caprolactam) , 1994 .

[61]  O. Ornatsky,et al.  The influence of PEG macromonomers on the size and properties of thermosensitive aqueous microgels , 2009 .

[62]  Ashok Kumar,et al.  Imidazole—a new ligand for metal affinity precipitation , 1997 .

[63]  Yongjun Li,et al.  A novel poly(N-vinylcaprolactam)-based well-defined amphiphilic graft copolymer synthesized by successive RAFT and ATRP , 2013 .

[64]  S. Peng,et al.  Ca2+-induced Thermoreversible and Controllable Complexation of Poly(N-vinylcaprolactam-co-sodium acrylate) Microgels in Water , 2001 .

[65]  R. Rossi,et al.  Synthesis and characterization of temperature‐responsive copolymers based on N‐vinylcaprolactam and their grafting on fibres , 2009 .

[66]  Chi Wu,et al.  Thermally Sensitive and Biocompatible Poly(N-vinylcaprolactam): Synthesis and Characterization of High Molar Mass Linear Chains , 1999 .

[67]  Mathias Destarac,et al.  Thermoresponsive poly(N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability. , 2011, Chemical communications.

[68]  A. Khokhlov,et al.  Poly(N‐vinylcaprolactam) gel/organic dye complexes as sensors for metal ions in aqueous salt solutions , 2001 .

[69]  H. Tenhu,et al.  Thermosensitive graft copolymers of an amphiphilic macromonomer and N-vinylcaprolactam : Synthesis and solution properties in dilute aqueous solutions below and above the LCST , 2005 .

[70]  B. Mattiasson,et al.  Aqueous two-phase system formed by thermoreactive vinyl imidazole/vinyl caprolactam copolymer and dextran for partitioning of a protein with a polyhistidine tail , 1997 .

[71]  M. Prabaharan,et al.  Stimuli-responsive chitosan-graft-poly(N-vinylcaprolactam) as a promising material for controlled hydrophobic drug delivery. , 2008, Macromolecular bioscience.

[72]  R. K. Shah,et al.  Monodisperse Thermoresponsive Microgels with Tunable Volume‐Phase Transition Kinetics , 2007 .

[73]  B. Mattiasson,et al.  Thermosensitive copolymers of N-vinylimidazole as displacers of proteins in immobilised metal affinity chromatography. , 2001, Journal of chromatography. A.

[74]  A. A. Arest-Yakubovich,et al.  Copolymerization in N-vinylcaprolactam-N-vinylpyrrolidone and N,N-diethylacrylamide-N,N-dimethylacrylamide systems: The effect of composition and spatial structure of copolymers on their thermal sensitivity , 2007 .

[75]  B. Mattiasson,et al.  "Protein-like" copolymers: Effect of polymer architecture on the performance in bioseparation process , 2002 .

[76]  C. Jérôme,et al.  Reversibly crosslinked thermo- and redox-responsive nanogels for controlled drug release , 2014 .

[77]  A. Pich,et al.  Poly(N-vinylcaprolactam) microgels. Polymeric stabilization with poly(vinyl alcohol) , 2003 .

[78]  A. R. Khokhlov,et al.  Energetics of the binding of Cu(II) ions by thermosensitive copolymers of N-vinylcaprolactam and N-vinylimidazole in different conformational states of macromolecules , 2010 .

[79]  C. Jérôme,et al.  Synthesis of thermo‐responsive poly(N‐vinylcaprolactam)‐containing block copolymers by cobalt‐mediated radical polymerization , 2012 .

[80]  F. Winnik Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST , 1990 .

[81]  Selvaraj Raja,et al.  Aqueous Two Phase Systems for the Recovery of Biomolecules –A Review , 2012 .

[82]  V. A. Kuznetsov,et al.  Synthesis of N,N-dimethylaminoethyl methacrylate copolymers with N-vinyl caprolactam and their complexing and flocculating behavior , 2006 .

[83]  A. Pich,et al.  Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels: 2. Incorporation of polypyrrole , 2003 .

[84]  P. C. Chua,et al.  THF hydrate crystal growth inhibition with small anionic organic compounds and their synergistic properties with the kinetic hydrate inhibitor poly(N-vinylcaprolactam) , 2011 .

[85]  G. Malucelli,et al.  Synthesis and characterization of graphene‐containing thermoresponsive nanocomposite hydrogels of poly(N‐vinylcaprolactam) prepared by frontal polymerization , 2012 .

[86]  A. Pich,et al.  Microgel/clay nanohybrids as responsive scavenger systems , 2010 .

[87]  Kutty Selva Nandakumar,et al.  Polymeric cryogels are biocompatible, and their biodegradation is independent of oxidative radicals. , 2014, Journal of biomedical materials research. Part A.

[88]  M. Basha,et al.  Soluplus®: A novel polymeric solubilizer for optimization of Carvedilol solid dispersions: Formulation design and effect of method of preparation , 2013 .

[89]  Baisong Chang,et al.  Poly(vinylcaprolactam)-based biodegradable multiresponsive microgels for drug delivery. , 2013, Biomacromolecules.

[90]  Soo-young Park,et al.  Poly(N-vinyl caprolactam) grown on nanographene oxide as an effective nanocargo for drug delivery. , 2014, Colloids and surfaces. B, Biointerfaces.

[91]  A. Smirnov,et al.  Compatibility of copolymers of N-vinylcaprolactam and vinyltetrazoles with aqueous systems , 2011 .

[92]  H. Tenhu,et al.  Pyrene-Labeled Graft Copolymers of N-Vinylcaprolactam: Synthesis and Solution Properties in Water , 2005 .

[93]  K. Chennazhi,et al.  Biodegradable and thermo-sensitive chitosan-g-poly(N-vinylcaprolactam) nanoparticles as a 5-fluorouracil carrier , 2011 .

[94]  E. Melenevskaya,et al.  Poly(N‐vinylcaprolactam)‐C60 Complexes in Aqueous Solution , 2008 .

[95]  S. Sukhishvili,et al.  Hydrogen-Bonded Multilayers of a Neutral Polymer and a Polyphenol , 2008 .

[96]  T. Takeya,et al.  Solubilisation of [60]fullerenes using block copolymers and evaluation of their photodynamic activities. , 2008, Organic & biomolecular chemistry.

[97]  J. Kenny,et al.  Stimuli responsive hydrogels prepared by frontal polymerization. , 2009, Biomacromolecules.

[98]  G. J. Schneider,et al.  Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[99]  A. Khokhlov,et al.  Thermosensitive imidazole-containing polymers as catalysts in hydrolytic decomposition of p-nitrophenyl acetate , 2004 .

[100]  Hsieh-Chih Tsai,et al.  Stimulated release of photosensitizers from graft and diblock micelles for photodynamic therapy. , 2012, Biomaterials.

[101]  Igor Nabiev,et al.  Biosensing with thermosensitive fluorescent quantum dot-containing polymer particles , 2012, Optics & Photonics - NanoScience + Engineering.

[102]  S. Sukhishvili,et al.  Copolymerization of N-vinylcaprolactam and glycidyl methacrylate: Reactivity ratio and composition control , 2006 .

[103]  A. Pich,et al.  Synthesis and Characterization of Poly(vinylcaprolactam)-Based Microgels Exhibiting Temperature and pH-Sensitive Properties , 2006 .

[104]  A. Smirnov,et al.  Copolymerization of 5-vinyltetrazole with N-vinyllactams and properties of the copolymers , 2010 .

[105]  S. Sukhishvili,et al.  Hydrogen-bonded layer-by-layer temperature-triggered release films. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[106]  A. Pich,et al.  Thermo-sensitive poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) microgels. 3. Incorporation of polypyrrole by selective microgel swelling in ethanol–water mixtures , 2004 .

[107]  C. Filipe,et al.  Chromatographic separation of proteins using hydrophobic membrane shielded with an environment-responsive hydrogel , 2009 .

[108]  B. Mattiasson,et al.  New Polymers Forming Aqueous Two‐Phase Polymer Systems , 2000, Biotechnology progress.

[109]  D. Wan,et al.  Controlled radical polymerization of N-vinylcaprolactam mediated by xanthate or dithiocarbamate , 2008 .

[110]  I. V. Bakeeva,et al.  Structure and characteristics of organic-inorganic hybrid hydrogels based on poly(N-vinylcaprolactam)-SiO2 , 2010 .

[111]  A. Khokhlov,et al.  Effect of complexation of monomer units on pH- and temperature-sensitive properties of poly(N-vinylcaprolactam-co-methacrylic acid) , 2003 .

[112]  J. Darr,et al.  Synthesis and characterization of a novel N-vinylcaprolactam-containing acrylic acid terpolymer for applications in glass-ionomer dental cements. , 2009, Acta biomaterialia.

[113]  Ashok Kumar,et al.  Synthesis and Characterization of a Temperature-Responsive Biocompatible Poly(N-vinylcaprolactam) Cryogel: a Step Towards Designing a Novel Cell Scaffold , 2009, Journal of biomaterials science. Polymer edition.

[114]  Synthesis, characterization and use of Poly (N-isopropylacrylamide-co-N-vinylcaprolactam) crosslinked thermoresponsive microspheres for control release of Ciproflaxin hydrochloride drug , 2011 .

[115]  I. Beletskaya,et al.  Palladium supported on poly(N-vinylimidazole) or poly(N-vinylimidazole-co-N-vinylcaprolactam) as a new recyclable catalyst for the Mizoroki-Heck reaction , 2007 .

[116]  Ashok Kumar,et al.  Thermoresponsive poly(N-vinylcaprolactam) cryogels: synthesis and its biophysical evaluation for tissue engineering applications , 2010, Journal of materials science. Materials in medicine.

[117]  F. Simon,et al.  Temperature sensitive hybrid microgels loaded with ZnO nanoparticles , 2008 .

[118]  E. V. Anufrieva,et al.  Thermosensitive Water–Polymer Systems Studied by Luminescent Spectroscopy. Copolymers of N-vinylcaprolactam and N-vinylpyrrolidone , 2000 .

[119]  H. Tenhu,et al.  Mesoglobules of thermoresponsive polymers in dilute aqueous solutions above the LCST , 2005 .

[120]  W. Treimer,et al.  Polymer hydration and microphase decomposition in poly(N-vinylcaprolactam)-water complex , 2003 .

[121]  M. Winnik,et al.  Kinetics of reversible aggregation of soft polymeric particles in dilute dispersion , 2004 .

[122]  H. Berghmans,et al.  Molecular complex formation in the system poly(vinyl methyl ether)/water , 2000 .

[123]  Eric J. Goethals,et al.  Phase behaviour of poly(N-vinyl caprolactam) in water , 2000 .

[124]  A. Khokhlov,et al.  Thermoshrinking behavior of poly(vinylcaprolactam) gels in aqueous solution , 1996 .

[125]  Wei He,et al.  Functionalized Biocompatible Poly(N-vinyl-2-caprolactam) With pH-Dependent Lower Critical Solution Temperature Behaviors , 2011 .

[126]  J. Steed,et al.  A simple chemical model for clathrate hydrate inhibition by polyvinylcaprolactam. , 2011, Chemical communications.

[127]  J. Forcada,et al.  N-vinylcaprolactam-based microgels for biomedical applications , 2010 .

[128]  A. Pich,et al.  Guided self-assembly of microgels: from particle arrays to anisotropic nanostructures , 2011 .

[129]  K. Chennazhi,et al.  Curcumin-loaded biocompatible thermoresponsive polymeric nanoparticles for cancer drug delivery. , 2011, Journal of colloid and interface science.

[130]  Poly(N-vinylcaprolactam) Microgel Particles Grafted with Amphiphilic Chains , 2000 .

[131]  E. Bucio,et al.  Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes , 2014 .

[132]  B. Mattiasson,et al.  Temperature-induced displacement of proteins from dye-affinity columns using an immobilized polymeric displacer , 1994 .

[133]  A. Khokhlov,et al.  Microcalorimetric Study of Thermal Cooperative Transitions in Poly(N-vinylcaprolactam) Hydrogels , 1997 .

[134]  J. Forcada,et al.  N‐vinylcaprolactam‐based microgels: Synthesis and characterization , 2008 .

[135]  J. I. Miranda,et al.  Evidences of a hydrolysis process in the synthesis of N-vinylcaprolactam-based microgels , 2008 .

[136]  C. Jérôme,et al.  Double thermoresponsive di- and triblock copolymers based on N-vinylcaprolactam and N-vinylpyrrolidone: synthesis and comparative study of solution behaviour , 2014 .

[137]  M. Ilavský,et al.  Phase Transition in Swollen Gels XXVIII. Swelling and Mechanical Behavior of Poly(1-vinyl-2-pyrrolidone-co-N-vinylcaprolactam) Gels in Water/Acetone Mixtures , 2001 .

[138]  A. Pich,et al.  Growth of Hydroxyapatite Nanocrystals in Aqueous Microgels , 2008 .

[139]  S. Peng,et al.  Controllable interaction between cations and thermally sensitive poly(N-vinylcaprolactam-co-sodium acrylate) microgels in water , 2001 .

[140]  A. Elaissari,et al.  Synthesis of biocompatible and thermally sensitive poly(N-vinylcaprolactam) nanogels via inverse miniemulsion polymerization: Effect of the surfactant concentration , 2010 .

[141]  B. Mattiasson,et al.  Synthesis and studies of N-vinylcaprolactam/N-vinylimidazole copolymers that exhibit the proteinlike behavior in aqueous media , 2003 .

[142]  M. Möller,et al.  Degradable microgels synthesized using reactive polyvinylalkoxysiloxanes as crosslinkers , 2013 .

[143]  A. Pich,et al.  Aqueous microgels for the growth of hydroxyapatite nanocrystals. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[144]  B. Mattiasson,et al.  Polymer versus monomer as displacer in immobilized metal affinity chromatography. , 2001, Journal of chromatography. B, Biomedical sciences and applications.

[145]  H. Tenhu,et al.  Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). , 2005, Biomaterials.

[146]  V. S. Parmar,et al.  Immobilized enzymes and cells in poly(N-vinyl caprolactam)-based hydrogels , 2000 .

[147]  V. Boyko,et al.  Monitoring of the Gelation Process on a Radical Chain Cross-Linking Reaction Based on N-Vinylcaprolactam by Using Dynamic Light Scattering , 2004 .

[148]  T. Anan'eva,et al.  Water-soluble complexes of poly(N-vinylamides) of various structures with C60 and C70 fullerenes , 2006 .

[149]  T. Kawamura,et al.  Clustering structure of aqueous solution of kinetic inhibitor of gas hydrates. , 2005, The journal of physical chemistry. B.

[150]  S. Schricker,et al.  Ultrasonically set novel NVC-containing glass-ionomer cements for applications in restorative dentistry , 2011, Journal of materials science. Materials in medicine.

[151]  Wei He,et al.  Synthesis of 3‐(tert‐Butoxycarbonylmethyl)‐N‐vinyl‐2‐caprolactam and Homologous Copolymerization Toward Biocompatible Carboxylated Poly(N‐vinyl‐2‐caprolactam) Responsive to pH and Temperature , 2014 .

[152]  Alexei R. Khokhlov,et al.  Energetics of Cooperative Transitions of N-Vinylcaprolactam Polymers in Aqueous Solutions , 2005 .

[153]  D. Demco,et al.  Copolymer microgels by precipitation polymerisation of N-vinylcaprolactam and N-isopropylacrylamides in aqueous medium , 2012, Colloid and Polymer Science.

[154]  F. D. Prez,et al.  Thermo-Responsive Organic/Inorganic Hybrid Hydrogels based on Poly(N-vinylcaprolactam) , 2003 .

[155]  C. Boghina,et al.  Properties of solutions of poly‐N‐vinylcaprolactam , 1968 .

[156]  K. Montoya-Villegas,et al.  Synthesis and characterization of four- and six-arm star-shaped poly(ε-caprolactone)-b-poly(N-vinylcaprolactam): Micellar and core degradation studies , 2015 .

[157]  A. Khokhlov,et al.  Behavior of Poly(N-vinylcaprolactam-co-methacrylic acid) Macromolecules in Aqueous Solution: Interplay between Coulombic and Hydrophobic Interaction , 2002 .

[158]  Luke M. Geever,et al.  Synthesis and characterization of physically crosslinked N‐vinylcaprolactam, acrylic acid, methacrylic acid, and N,N‐dimethylacrylamide hydrogels , 2013 .

[159]  S. Schricker,et al.  Surface properties and bond strength measurements of N-vinylcaprolactam (NVC)-containing glass-ionomer cements. , 2011, The Journal of prosthetic dentistry.

[160]  Won‐Ki Lee,et al.  Thermoresponsive N-vinyl caprolactam grafted sodium alginate hydrogel beads for the controlled release of an anticancer drug , 2013, Cellulose.

[161]  J. Forcada,et al.  Synthesis of new enzymatically degradable thermo-responsive nanogels , 2013 .

[162]  W. Tian,et al.  Multiresponsive Properties of Triple‐Shell Architectures with Poly(N,N‐diethylaminoethyl methacrylate), Poly(N‐vinylcaprolactam), and Poly(N,N‐dimethylaminoethyl methacrylate) as Building Blocks , 2012 .

[163]  D. Demco,et al.  Microgel Heterogeneous Morphology Reflected in Temperature-Induced Volume Transition and 1H High-Resolution Transverse Relaxation NMR. The Case of Poly(N-vinylcaprolactam) Microgel , 2011 .

[164]  H. Tenhu,et al.  Mesoporous silica particles grafted with poly(ethyleneoxide- block - N -vinylcaprolactam) , 2013 .

[165]  B. Mattiasson,et al.  Effect of synthetic polymers, poly(N-vinyl pyrrolidone) and poly(N-vinyl caprolactam), on elution of lactate dehydrogenase bound to Blue Sepharose , 1993 .

[166]  S. Devi,et al.  A novel approach to prepare etoposide-loaded poly(N-vinyl caprolactam-co-methylmethacrylate) copolymeric nanoparticles and their controlled release studies , 2013 .

[167]  S. F. Medeiros,et al.  Solution Polymerization of N-vinylcaprolactam in 1,4-dioxane. Kinetic Dependence on Temperature, Monomer, and Initiator Concentrations , 2010 .

[168]  S. Mazières,et al.  Reversible addition–fragmentation chain‐transfer polymerization of vinyl monomers with N,N‐dimethyldiselenocarbamates , 2013 .

[169]  Eric J. Goethals,et al.  pH- and thermo-responsive properties of poly(N-vinylcaprolactam-co-acrylic acid) copolymers† , 2003 .

[170]  K. Bernaerts,et al.  Thermo‐Responsive and Emulsifying Properties of Poly(N‐vinylcaprolactam) Based Graft Copolymers , 2003 .

[171]  B Mattiasson,et al.  'Smart' polymers and what they could do in biotechnology and medicine. , 1999, Trends in biotechnology.

[172]  O. Ornatsky,et al.  Hybrid nanogels by encapsulation of lanthanide-doped LaF3 nanoparticles as elemental tags for detection by atomic mass spectrometry , 2010 .

[173]  G. Iliakis,et al.  Conformational transitions of proteins engaged in DNA double-strand break repair, analysed by tryptophan fluorescence emission and FRET. , 2012, The Biochemical journal.

[174]  F. D. Prez,et al.  Track etched membranes with thermo-adjustable porosity and separation properties by surface immobilization of poly(N-vinylcaprolactam) , 2005 .

[175]  Y. Kirsh Water Soluble Poly-N-Vinylamides: Synthesis and Physicochemical Properties , 1998 .

[176]  S. Kuptsova,et al.  Immobilized Thrombin Receptor Agonist Peptide Accelerates Wound Healing in Mice , 2001, Clinical and applied thrombosis/hemostasis : official journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis.

[177]  A. Pich,et al.  Temperature-sensitive hybrid microgels with magnetic properties. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[178]  B. Mattiasson,et al.  Protein displacement in dye–ligand chromatography using neutral and charged polymers , 1998, Journal of molecular recognition : JMR.

[179]  R. Linhardt,et al.  Tunable Thermo-Responsive Poly(N-vinylcaprolactam) Cellulose Nanofibers: Synthesis, Characterization, and Fabrication† , 2013 .

[180]  S. Schricker,et al.  Effects of N-vinylcaprolactam containing polyelectrolytes on hardness, fluoride release and water sorption of conventional glass ionomers. , 2011, The Journal of prosthetic dentistry.

[181]  H. Tenhu,et al.  Light scattering and microcalorimetry studies on aqueous solutions of thermo-responsive PVCL-g-PEO copolymers , 2003 .

[182]  A. Khokhlov,et al.  Protein-like copolymers: Computer simulation , 1998 .

[183]  S. Çavuş,et al.  Synthesis and Characterization of Novel Poly(N-vinylcaprolactam-co-itaconic Acid) Gels and Analysis of pH and Temperature Sensitivity , 2012 .

[184]  T. Hellweg,et al.  Smart inorganic/organic hybrid microgels: Synthesis and characterisation , 2009 .

[185]  Claus-Michael Lehr,et al.  Soluplus® as an effective absorption enhancer of poorly soluble drugs in vitro and in vivo. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[186]  Á. Licea-Claveríe,et al.  Preparation of Poly(N‐Vinylcaprolactam) (NVCL) and Statistical Copolymers of NVCL with Variable Cloud Point Temperature by Using A Trithiocarbonate RAFT Agent , 2013 .

[187]  J. Forcada,et al.  New Biocompatible Microgels , 2009 .

[188]  Christine Steinbach,et al.  Chitosan and mixtures with aqueous biocompatible temperature sensitive polymer as flocculants , 2012 .

[189]  V. Lozinsky,et al.  Behavior of protein-like N-vinylcaprolactam and N-vinylimidazole copolymers in aqueous solutions , 2006 .

[190]  V. A. Kuznetsov,et al.  Copolymerization of N-vinylcaprolactam with N-vinyl(benz)imidazoles and the properties of aqueous solutions of the copolymers , 2007 .

[191]  M. Tebaldi,et al.  Synthesis of stimuli-sensitive copolymers by RAFT polymerization: potential candidates as drug delivery systems , 2014 .

[192]  K. Matyjaszewski,et al.  The development of microgels/nanogels for drug delivery applications , 2008 .

[193]  Jouni Hirvonen,et al.  Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer. , 2007, International journal of pharmaceutics.

[194]  C. Filipe,et al.  Environment-responsive hydrogel-based ultrafiltration membranes for protein bioseparation , 2009 .

[195]  R. von Klitzing,et al.  A new multiresponsive drug delivery system using smart nanogels. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[196]  P. Štěpánek,et al.  Thermoresponsive polymer system based on poly(N-vinylcaprolactam) intended for local radiotherapy applications. , 2015, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[197]  T. Aminabhavi,et al.  Poly(N-vinylcaprolactam-co-methacrylic acid) hydrogel microparticles for oral insulin delivery , 2011, Journal of microencapsulation.

[198]  Sung-Hoon Kim,et al.  Fluorescent thermometer based on poly(N-vinylcaprolactam) with 2D-π-A type pyran-based fluorescent dye , 2011 .

[199]  Electric Conductance of Films Prepared from Polymeric Composite Nanoparticles , 2008 .

[200]  Guoxue Li,et al.  One-pot synthesis of poly(N-vinylcaprolactam)-based biocompatible block copolymers using a dual initiator for ROP and RAFT polymerization , 2013 .

[201]  C. Jérôme,et al.  One-pot controlled synthesis of double thermoresponsive N-vinylcaprolactam-based copolymers with tunable LCSTs , 2013 .

[202]  A. Pich,et al.  Metal nanoparticles inside microgel/clay nanohybrids: Synthesis, characterization and catalytic efficiency in cross-coupling reactions. , 2014, Journal of colloid and interface science.

[203]  A. Pich,et al.  Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process , 2013 .

[204]  S. Çavuş,et al.  Novel Poly(N-vinylcaprolactam-co-2-(diethylamino)ethyl methacrylate) Gels: Characterization and Detailed Investigation on Their Stimuli-Sensitive Behaviors and Network Structure , 2010 .

[205]  K. Dušek,et al.  Phase Transitions in Swollen Networks. 3. Swelling Behavior of Radiation Cross-Linked Poly(vinyl methyl ether) in Water† , 1998 .

[206]  Chi Wu,et al.  Interaction between Surfactant and Poly(N-vinylcaprolactam) Microgels , 1999 .

[207]  B. Kvamme,et al.  Impact of Low-Dosage Inhibitors on Clathrate Hydrate Stability , 2010 .

[208]  S. Peng,et al.  Comparison of the Ca2+/COO- Complexation Induced Controllable Aggregation of P(VCL-co-NaA) Spherical Microgels and Linear Chains , 2001 .

[209]  A. Pich,et al.  Aqueous nanogels modified with cyclodextrin , 2011 .

[210]  G. V. Shatalov,et al.  Latex Thermostimulated Flocculation in Poly(N-Vinylcaprolactam) Solutions , 2004 .

[211]  R. Kumar,et al.  Gel-immobilized enzymes as promising biocatalysts: Results from Indo-Russian collaborative studies , 2005 .

[212]  V. Kabanov,et al.  Polypropylene Modification by the Radiation Graft Polymerization of N-Vinylcaprolactam , 2003 .

[213]  C. Vílchez,et al.  Studies on the suitability of alginate-entrapped Chlamydomonas reinhardtii cells for sustaining nitrate consumption processes. , 2001, Bioresource technology.

[214]  A. Elaissari,et al.  Thermally-Sensitive and Magnetic Poly(N-Vinylcaprolactam)-Based Nanogels by Inverse Miniemulsion Polymerization , 2012 .

[215]  A. R. Khokhlov,et al.  Catalytic properties of the protein-like copolymer of N-vinylcaprolactam and N-vinylimidazole in the hydrolysis of an ester substrate , 2006 .

[216]  Ji Liu,et al.  Poly(N‐vinylcaprolactam): A Thermoresponsive Macromolecule with Promising Future in Biomedical Field , 2014, Advanced healthcare materials.

[217]  A. Pich,et al.  Poly(N-vinylcaprolactam-co-glycidyl methacrylate) aqueous microgels labeled with fluorescent LaF3:Eu nanoparticles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[218]  A. R. Khokhlov,et al.  Polymer gel/organic dye complexes in aqueous salt solutions , 1999 .

[219]  D. Wienke,et al.  Real-Time Infrared Determination of Photoinitiated Copolymerization Reactivity Ratios: Application of the Hilbert Transform and Critical Evaluation of Data Analysis Techniques , 2004 .

[220]  H. Tenhu,et al.  Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. , 2008, Journal of pharmaceutical sciences.

[221]  Tomoya Nakamura,et al.  Hydration and Phase Behavior of Poly(N-vinylcaprolactam) and Poly(N-vinylpyrrolidone) in Water , 2002 .

[222]  Elena E. Dormidontova,et al.  Thermo-Switchable Pressure-Sensitive Adhesives Based on Poly(N-vinyl caprolactam) Non-Covalently Cross-Linked by Poly(ethylene glycol) , 2014 .

[223]  C. Lück,et al.  Hybrid microgels with antibacterial properties. , 2009, Macromolecular bioscience.

[224]  J. Forcada,et al.  N‐vinylcaprolactam‐based microgels: Effect of the concentration and type of cross‐linker , 2008 .

[225]  O. Ornatsky,et al.  Biocompatible hybrid nanogels. , 2008, Small.

[226]  S. Sukhishvili,et al.  Tuning swelling pH and permeability of hydrogel multilayer capsules. , 2008, Soft matter.

[227]  M. Ilavský,et al.  Phase transition in swollen gels 29. Temperature dependences of swelling and mechanical behaviour of poly(N-vinylcaprolactam-co-1-vinyl-2-pyrrolidone) gels in water , 2001 .

[228]  M. Ilavský,et al.  Phase transition in swollen gels: 26. Effect of charge concentration on temperature dependence of swelling and mechanical behaviour of poly(N-vinylcaprolactam) gels , 1999 .

[229]  S. Rashidova,et al.  Some conformational parameters of poly(vinylpyrrolidone), poly(vinylcaprolactam) and their copolymers in dilute solutions , 1989 .

[230]  A. V. Selivanova,et al.  Palladium nanoparticles stabilized by a copolymer of N-vinylimidazole with N-vinylcaprolactam as efficient recyclable catalyst of aromatic cyanation , 2010 .

[231]  Wenhao Qian,et al.  Synthesis of PAA‐g‐PNVCL Graft Copolymer and Studies on Its Loading of Ornidazole , 2014 .

[232]  K. Knudsen,et al.  Association in Aqueous Solutions of a Thermoresponsive PVCL-g-C11EO42 Copolymer , 2005 .

[233]  S. Devi,et al.  Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam) , 2010 .

[234]  Svetlana A. Sukhishvili,et al.  Hydrogen-Bonded Hybrid Multilayers: Film Architecture Controls Release of Macromolecules , 2008 .

[235]  I. V. Bakeeva,et al.  Hydrogel poly(N-vinylcaprolactam) beads: Preparation, properties, and applications , 2005, Pharmaceutical Chemistry Journal.

[236]  Jacqueline Forcada,et al.  Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide) , 2012 .

[237]  S. Sukhishvili,et al.  Hydrogen-Bonded Multilayers of Thermoresponsive Polymers , 2005 .

[238]  Yongjun Li,et al.  Poly(acrylic acid)-graft-poly(N-vinylcaprolactam): a novel pH and thermo dual-stimuli responsive system , 2013 .

[239]  S. Peng,et al.  Ca2+-induced complexation between thermally sensitive spherical poly(N-vinyl-caprolactam-co-sodium acrylate) microgels and linear gelatin chains in water , 2001 .

[240]  R. Pelton,et al.  Temperature-sensitive aqueous microgels. , 2000, Advances in colloid and interface science.

[241]  G. Fundueanu,et al.  Thermo- and pH-sensitivity of poly(N-vinylcaprolactam-co-maleic acid) in aqueous solution , 2014, Polymer Bulletin.

[242]  S. Kuptsova,et al.  PROTEASES ENTRAPPED IN POLYMER COMPOSITE HYDROGELS: PREPARATION METHODS AND APPLICATIONS , 2000 .

[243]  B. Mattiasson,et al.  Synthesis and Properties of a “Protein-Like” Copolymer , 2000 .

[244]  Liang Yin,et al.  Layer-by-layer assembly of two temperature-responsive homopolymers at neutral pH and the temperature-dependent solubility of the multilayer film. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[245]  D. Demco,et al.  Polyampholyte Microgels with Anionic Core and Cationic Shell , 2010 .

[246]  F. D. Prez,et al.  Thermoresponsive Properties of Poly(N‐vinylcaprolactam)‐Poly(ethylene oxide) Aqueous Systems: Solutions and Block Copolymer Networks , 2001 .

[247]  V. N. Verezhnikov,et al.  pH-thermosensitive behavior of N,N-dimethylaminoethyl methacrylate (Co)polymers with N-vinylcaprolactam , 2006 .

[248]  J. Youk,et al.  Synthesis and micellar characterization of thermosensitive amphiphilic poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) block copolymers , 2012, Colloid and Polymer Science.

[249]  Lee Joon Ho,et al.  CELL SHEET DETACHMENT FROM POLY (N-VINYLCAPROLACTAM-CO-N-ISOPROPYLACRYLAMIDE) GRAFTED ONTO TISSUE CULTURE POLYSTYRENE DISHES , 2007 .

[250]  B. Mele,et al.  Influence of Poly(ethylene oxide) Grafts on Kinetics of LCST Behavior in Aqueous Poly(N-vinylcaprolactam) Solutions and Networks Studied by Modulated Temperature DSC , 2004 .

[251]  Abdelhamid Elaissari,et al.  Stimuli-Responsive and Biocompatible Poly( N -vinylcaprolactam- co -acrylic acid)-Coated Iron Oxide Nanoparticles by Nanoprecipitation Technique , 2013 .

[252]  A. Khokhlov,et al.  Conformational Changes of Poly(vinylcaprolactam) Macromolecules and Their Complexes with Ionic Surfactants in Aqueous Solution , 1998 .

[253]  Robert Y. Lochhead,et al.  The Role of Polymers in Cosmetics: Recent Trends , 2007 .

[254]  Toyoichi Tanaka,et al.  NMR study of poly(N-isopropylacrylamide) gels near phase transition , 1991 .

[255]  W. Burchard,et al.  Hydrophobic water‐soluble polymers, 1. Dilute solution properties of poly(1‐vinyl‐2‐piperidone) and poly(N‐vinylcaprolactam) , 1990 .

[256]  B. Godin,et al.  Hydrogen-bonded Multilayers of Silk Fibroin: From Coatings to Cell-mimicking Shaped Microcontainers. , 2012, ACS macro letters.

[257]  A. Pich,et al.  Hybrid Microgels with ZnS Inclusions , 2005 .

[258]  Jouni Hirvonen,et al.  Binding and release of drugs into and from thermosensitive poly(N-vinyl caprolactam) nanoparticles. , 2002, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[259]  S. Ahn,et al.  Poly(vinyl chloride)-graft-poly(N-vinyl caprolactam) graft copolymer: synthesis and use as template for porous TiO2 thin films in dye-sensitized solar cells , 2012, Ionics.

[260]  Yufei Wang,et al.  Well‐defined thermoresponsive dendritic polyamide/poly(N‐vinylcaprolactam) block copolymers , 2013 .

[261]  V. Kozlovskaya,et al.  Synthesis and self‐assembly of thermosensitive double‐hydrophilic poly(N‐vinylcaprolactam)‐b‐poly(N‐vinyl‐2‐pyrrolidone) diblock copolymers , 2014 .

[262]  C. Filipe,et al.  Biocompatible poly(N-vinyllactam)-based materials with environmentally-responsive permeability , 2008, Journal of biomaterials science. Polymer edition.

[263]  A. Pich,et al.  Preparation of Hybrid Microgels Functionalized by Silver Nanoparticles , 2006 .

[264]  Yang Wang,et al.  Bioresponsive Controlled Drug Release Based on Mesoporous Silica Nanoparticles Coated with Reductively Sheddable Polymer Shell , 2013 .