Optimality principles in variable stiffness control: The VSA hammer

The control of a robot's mechanical impedance is attracting increasing attention of the robotics community. Recent research in Robotics has recognized the importance of Variable Stiffness Actuators (VSA) in safety and performance of robots. An important step in using VSA for safety has been to understand the optimality principles that regulate the synchronized variation of stiffness and velocity when moving in the shortest time while limiting possible impact forces (the safe brachistochrone problem). In this paper, we follow a similar program of understanding the use of VSA in performance enhancement, looking at very dynamic tasks where impacts are maximized. To this purpose we address a new optimization problem that consists in choosing the inputs for maximizing the velocity of a link at a given final position, such as, e.g., for maximizing the effect of a hammer impact. We first study the problem with fixed stiffness, and show that, under realistic modeling assumptions, there does exist an optimal linear spring for the given inertia and motor. We then study optimal control of VSA and show that varying the spring stiffness during the execution of the hammering task improves the final performance substantially. The optimal control law is obtained analytically, thus providing insight in the optimality principles underpinning general VSA control. Finally, we show the practicality of our theoretical results with experimental tests.

[1]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[2]  Mike Blackwell,et al.  Roboleg: a robotic soccer-ball kicking leg , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[3]  Matthew M. Williamson,et al.  Series elastic actuators , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[4]  Shigeki Sugano,et al.  Development and evaluation of seven DOF MIA ARM , 1997, Proceedings of International Conference on Robotics and Automation.

[5]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot having antagonistic driven joints and three DOF trunk , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[6]  Yoshihiko Nakamura,et al.  Skill of compliance with controlled charging/discharging of kinetic energy , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[7]  Antonio Bicchi,et al.  Fast and "soft-arm" tactics [robot arm design] , 2004, IEEE Robotics & Automation Magazine.

[8]  Antonio Bicchi,et al.  Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[9]  Hugh M. Herr,et al.  The effect of series elasticity on actuator power and work output: Implications for robotic and prosthetic joint design , 2006, Robotics Auton. Syst..

[10]  Bram Vanderborght,et al.  Exploiting Natural Dynamics to Reduce Energy Consumption by Controlling the Compliance of Soft Actuators , 2006, Int. J. Robotics Res..

[11]  G. Hirzinger,et al.  A new variable stiffness design: Matching requirements of the next robot generation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[12]  Alin Albu-Schäffer,et al.  The role of the robot mass and velocity in physical human-robot interaction - Part I: Non-constrained blunt impacts , 2008, 2008 IEEE International Conference on Robotics and Automation.

[13]  Alin Albu-Schäffer,et al.  New insights concerning intrinsic joint elasticity for safety , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[14]  Nikolaos G. Tsagarakis,et al.  A novel actuator with adjustable stiffness (AwAS) , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Manuel G. Catalano,et al.  VSA-HD: From the enumeration analysis to the prototypical implementation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Alin Albu-Schäffer,et al.  On joint design with intrinsic variable compliance: derivation of the DLR QA-Joint , 2010, 2010 IEEE International Conference on Robotics and Automation.

[17]  Nikolaos G. Tsagarakis,et al.  VSA-CubeBot: A modular variable stiffness platform for multiple degrees of freedom robots , 2011, 2011 IEEE International Conference on Robotics and Automation.

[18]  Alin Albu-Schaffer,et al.  Optimal Control for Maximizing Link Velocity of Robotic Variable Stiffness Joints , 2011 .