Robust H2/H∞-state estimation for systems with error variance constraints: the continuous-time case

The paper is concerned with the state estimator design problem for perturbed linear continuous-time systems with H/sub /spl infin// norm and variance constraints. The perturbation is assumed to be time-invariant and norm-bounded and enters into both the state and measurement matrices. The problem we address is to design a linear state estimator such that, for all admissible measurable perturbations, the variance of the estimation error of each state is not more than the individual prespecified value, and the transfer function from disturbances to error state outputs satisfies the prespecified H/sub /spl infin// norm upper bound constraint, simultaneously. Existence conditions of the desired estimators are derived in terms of Riccati-type matrix inequalities, and the analytical expression of these estimators is also presented. A numerical example is provided to show the directness and effectiveness of the proposed design approach.

[1]  H. Unbehauen,et al.  Robust H2/H∞-state estimation for discrete-time systems with error variance constraints , 1997, IEEE Trans. Autom. Control..

[2]  K. Grigoriadis,et al.  A Combined Alternating Projections and Semidefinite Programming Algorithm for Low-Order Control Design , 1996 .

[3]  D. McFarlane,et al.  Optimal guaranteed cost control and filtering for uncertain linear systems , 1994, IEEE Trans. Autom. Control..

[4]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[5]  Mark J. Damborg,et al.  Heuristically enhanced feedback control of constrained discrete-time linear systems , 1990, at - Automatisierungstechnik.

[6]  Shinji Hara,et al.  Global optimization for constantly scaled /spl Hscr//sub /spl infin// control problem , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[7]  Sérgio Ricardo de Souza,et al.  Output Feedback Stabilization of Uncertain Systems through a Min/Max Problem* , 1993 .

[8]  G. Papavassilopoulos,et al.  A global optimization approach for the BMI problem , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[9]  D. Bernstein,et al.  Steady-state kalman filtering with an H∞ error bound , 1989, 1989 American Control Conference.

[10]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[11]  Lihua Xie,et al.  Robust Kalman filtering for uncertain systems , 1994 .

[12]  E. Yaz,et al.  Nonlinear Estimation by Covariance Assignment , 1993 .

[13]  G. Bitsoris,et al.  An algorithm for the constrained regulation of linear systems , 1994 .

[14]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[15]  E. Yaz,et al.  Linear and nonlinear estimation with uncertain observations , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[16]  Siep Weiland,et al.  H2 Optimal Control , 2000 .

[17]  Per Hagander,et al.  A new design of constrained controllers for linear systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[18]  M. Cwikel,et al.  Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states , 1984 .

[19]  J.-C. Hennet,et al.  On (A, B)-invariance of polyhedral domains for discrete-time systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[20]  Heinz Unbehauen,et al.  Continuous-time approaches to system identification - A survey , 1990, Autom..

[21]  U. Shaked,et al.  H,-OPTIMAL ESTIMATION: A TUTORIAL , 1992 .

[22]  D. Bernstein,et al.  Steady-state Kalman filtering with an H ∞ error bound , 1989 .

[23]  G. Nicolao,et al.  Optimal robust filtering with time-varying parameter uncertainty , 1996 .

[24]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[25]  J. Hennet,et al.  Feedback control of linear discrete-time systems under state and control constraints , 1988 .

[26]  W. Hager,et al.  Optimal Control: Theory, Algorithms, and Applications , 1998 .

[27]  E. Yaz,et al.  Continuous and discrete state estimation with error covariance assignment , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[28]  D. Bernstein,et al.  Mixed-norm H 2 /H ∞ regulation and estimation: the discrete-time case , 1991 .

[29]  Lihua Xie,et al.  H∞ estimation for uncertain systems , 1992 .

[30]  G. Bitsoris On the positive invariance of polyhedral sets for discrete-time systems , 1988 .

[31]  Heinz Unbehauen,et al.  Continuous-time Approaches to System Identification , 1988 .

[32]  R. Stengel Stochastic Optimal Control: Theory and Application , 1986 .

[33]  D. McFarlane,et al.  Optimal guaranteed cost filtering for uncertain discrete-time linear systems , 1996 .

[34]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..