A discrete‐time model for perishable inventory systems

We study a discrete-time (s, S) perishable inventory model with geometric inter‐demand times and batch demands. With a zero lead time and allowing backlogs, we can construct a multi‐dimensional Markov chain to model the inventory‐level process and obtain a closed‐formcost function. Numerical computation for the discrete‐time models is quite manageable. Our numerical results reveal some good properties of the cost function. By comparing our results with results from the corresponding continuous‐time models, we may also conclude that discrete‐time models may be used to approximate their continuous‐time counterparts effectively.

[1]  Srinivas R. Chakravarthy,et al.  A discrete queue with the markovian arrival process and phase type primary and secondary services , 1994 .

[2]  S. Nahmias Myopic Approximations for the Perishable Inventory Problem , 1976 .

[3]  Steven Nahmias,et al.  Perishable Inventory Theory: A Review , 1982, Oper. Res..

[4]  Steven Nahmias,et al.  Optimal Ordering Policies for Perishable Inventory - II , 1975, Oper. Res..

[5]  Marcel F. Neuts,et al.  A queueing model for an ATM rate control scheme , 1993, Telecommun. Syst..

[6]  A. Krishna Moorthy,et al.  On perishable inventory with Markov chain demand quantities , 1992 .

[7]  David Perry,et al.  A discrete time markovian inventory model for perishable commodities , 1989 .

[8]  Morris A. Cohen Analysis of Single Critical Number Ordering Policies for Perishable Inventories , 1976, Oper. Res..

[9]  N. Ravichandran,et al.  Stochastic analysis of a continuous review perishable inventory system with positive lead time and Poisson demand , 1995 .

[10]  M. L. Chaudhry,et al.  On steady-state queue size distributions of the discrete-time GI/G/1 queue , 1996, Advances in Applied Probability.

[11]  Brant E. Fries,et al.  Optimal Ordering Policy for a Perishable Commodity with Fixed Lifetime , 1975, Oper. Res..

[12]  Shmuel Gal,et al.  A Markovian Model for a Perishable Product Inventory , 1977 .

[13]  Thomas E. Morton,et al.  Near Myopic Heuristics for the Fixed-Life Perishability Problem , 1993 .

[14]  Attahiru Sule Alfa,et al.  Modelling Vehicular Traffic Using the Discrete Time Markovian Arrival Process , 1995, Transp. Sci..

[15]  Annie Gravey,et al.  On the Geo/D/1/and Geo/D/1/n Queues , 1990, Perform. Evaluation.

[16]  Marcel F. Neuts,et al.  Matrix-Geometric Solutions in Stochastic Models , 1981 .

[17]  Steven Nahmias,et al.  S-1, S Policies for Perishable Inventory , 1985 .

[18]  Howard J. Weiss,et al.  Optimal Ordering Policies for Continuous Review Perishable Inventory Models , 1980, Oper. Res..

[19]  Attahiru Sule Alfa,et al.  Discrete NT-policy single server queue with Markovian arrival process and phase type service , 1996 .