Efficient, Quantitative Numerical Methods for Statistical Image Deconvolution and Denoising
暂无分享,去创建一个
D. Russell Luke | C. Charitha | Ron Shefi | Yura Malitsky | D. R. Luke | Yura Malitsky | C. Charitha | Ron Shefi
[1] Paul Tseng,et al. Exact Regularization of Convex Programs , 2007, SIAM J. Optim..
[2] Gabriele Steidl,et al. First order algorithms in variational image processing , 2014, ArXiv.
[3] M. Ferris,et al. Weak sharp minima in mathematical programming , 1993 .
[4] D. Russell Luke,et al. A globally linearly convergent method for pointwise quadratically supportable convex–concave saddle point problems , 2017, 1702.08770.
[5] D. Russell Luke,et al. Nonconvex Notions of Regularity and Convergence of Fundamental Algorithms for Feasibility Problems , 2012, SIAM J. Optim..
[6] Marc Teboulle,et al. Necessary conditions for linear convergence of iterated expansive, set-valued mappings , 2017, Math. Program..
[7] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[8] Stephen P. Boyd,et al. Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..
[9] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[10] D. Gabay. Applications of the method of multipliers to variational inequalities , 1983 .
[11] J. Borwein,et al. Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .
[12] S. Hell,et al. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.
[13] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[14] Bingsheng He,et al. On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..
[15] Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization , 1989 .
[16] R. Vershynin,et al. A Randomized Kaczmarz Algorithm with Exponential Convergence , 2007, math/0702226.
[17] Daniel Boley,et al. Local Linear Convergence of the Alternating Direction Method of Multipliers on Quadratic or Linear Programs , 2013, SIAM J. Optim..
[18] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[19] D. Russell Luke,et al. Alternating Projections and Douglas-Rachford for Sparse Affine Feasibility , 2013, IEEE Transactions on Signal Processing.
[20] Peter Richtárik,et al. Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..
[21] Axel Munk,et al. Statistical Multiresolution Dantzig Estimation in Imaging: Fundamental Concepts and Algorithmic Framework , 2011, ArXiv.
[22] P. Lions,et al. Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .
[23] D. Russell Luke,et al. Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings , 2016, Math. Oper. Res..
[24] Marc Teboulle,et al. A simple algorithm for a class of nonsmooth convex-concave saddle-point problems , 2015, Oper. Res. Lett..
[25] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[26] Francis Bach,et al. SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.
[27] Nikos Komodakis,et al. Playing with Duality: An overview of recent primal?dual approaches for solving large-scale optimization problems , 2014, IEEE Signal Process. Mag..
[28] Shoham Sabach,et al. Proximal Heterogeneous Block Implicit-Explicit Method and Application to Blind Ptychographic Diffraction Imaging , 2015, SIAM J. Imaging Sci..
[29] Patrick L. Combettes,et al. Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[30] Hung M. Phan,et al. Linear convergence of the Douglas–Rachford method for two closed sets , 2014, 1401.6509.
[31] D. Russell Luke,et al. Local Linear Convergence of the ADMM/Douglas-Rachford Algorithms without Strong Convexity and Application to Statistical Imaging , 2015, SIAM J. Imaging Sci..
[32] D. R. Luke,et al. Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints , 2018, 1801.04782.
[33] S. Hell,et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[34] Antonin Chambolle,et al. An introduction to continuous optimization for imaging , 2016, Acta Numerica.
[35] Benar Fux Svaiter,et al. On Weak Convergence of the Douglas-Rachford Method , 2010, SIAM J. Control. Optim..
[36] Tong Zhang,et al. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction , 2013, NIPS.
[37] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..