The Effects of Advanced Fuels and Additives on Homogeneous Charge Compression Ignition Combustion and Deposit Formation.

.................................................................................................................................... xxxix CHAPTER 1 PROJECT INTRODUCTION AND BACKGROUND .......................................................... 1 1.1 Project Introduction ...................................................................................................................... 1 1.2 HCCI Background ........................................................................................................................ 3 1.3 Fuel Chemistry Overview ........................................................................................................... 11 1.4 Combustion Chamber Deposits .................................................................................................. 15 1.4.1 Deposits in Spark-Ignited Engines ...................................................................................... 16 1.4.2 Deposits in HCCI Engines .................................................................................................. 35 1.5 Motivation for the Research ........................................................................................................ 48 1.6 Research Objectives and Projected Contributions ...................................................................... 55 CHAPTER 2 – EXPERIMENTAL SETUP .............................................................................................. 59 2.1 Engine Specifications ................................................................................................................. 59 2.2 Intake Air System ....................................................................................................................... 64 2.3 Exhaust System ......................................................................................................................... 66 2.4 Fuelling Hardware ...................................................................................................................... 67 2.5 Data Acquisition ......................................................................................................................... 71 2.5.1 Crank-Angle Resolved Measurements ................................................................................ 72 2.5.2 Time Resolved Measurements ........................................................................................... 81

[1]  A. J. Garratt-Reed,et al.  Energy Dispersive X-ray Analysis in the Electron Microscope , 2003 .

[2]  S. B. Pocinki,et al.  Effects of Fuel and Additives on Combustion Chamber Deposits , 1994 .

[3]  Mingfa Yao,et al.  Progress and recent trends in homogeneous charge compression ignition (HCCI) engines , 2009 .

[4]  Bengt Johansson,et al.  Supercharging HCCI to Extend the Operating Range in a Multi-Cylinder VCR-HCCI Engine , 2003 .

[5]  Hanho Yun,et al.  High Load HCCI Operation Using Different Valving Strategies in a Naturally-Aspirated Gasoline HCCI Engine , 2011 .

[6]  Bruce G. Bunting,et al.  Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine , 2009 .

[7]  D. Enke,et al.  Order Distance Estimation in Porous Glasses via Transformed Correlation Function of Small-Angle Scattering , 2001 .

[8]  T. Urushihara,et al.  Stabilizations of High Temperature Heat Release CA50 and Combustion Period against Engine Load with the Dosage of Toluene in Fuel , 2010 .

[9]  J. Gagliardi The Effect of Fuel Anti-knock Compounds and Deposits on Exhaust Emissions , 1967 .

[10]  R. J. McConnell,et al.  ESTABLISHMENT OF ORI CHARACTERISTICS AS A FUNCTION OF SELECTED FUELS AND ENGINE FAMILIES , 1975 .

[11]  J. Longwell,et al.  Deposit Formation by Diffusion of Flame Intermediates to a Cold Surface , 1985 .

[12]  J. Dec,et al.  The Potential of HCCI Combustion for High Efficiency and Low Emissions , 2002 .

[13]  O. A. Uyehara,et al.  FUEL-COMPOSITION AND -VAPORIZATION EFFECTS ON COMBUSTION-CHAMBER DEPOSITS , 1981 .

[14]  John B. Heywood,et al.  Predicting the effects of air and coolant temperature, deposits, spark timing and speed on knock in spark ignition engines , 1992 .

[15]  William R. Leppard,et al.  The chemical origin of fuel octane sensitivity , 1990 .

[16]  B. Vaglieco,et al.  Particle Size Distributions from a DI High Performance SI Engine Fuelled with Gasoline-Ethanol Blended Fuels , 2011 .

[17]  D. Waddington,et al.  Low-temperature oxidation of 2-butene in the gas phase , 1968 .

[18]  D. Enke,et al.  Stereological Macropore Analysis of a Controlled Pore Glass by use of Small-Angle Scattering , 2001 .

[19]  M. Megnin,et al.  Combustion Chamber Deposit Measurement Techniques , 1994 .

[20]  R. Pugmire,et al.  Gasoline Type and Engine Effects on Equilibrium Combustion Chamber Deposits (CCD) , 2001 .

[21]  R. Boom,et al.  The Effects of Fuels and Engines on Intake Valve and Combustion Chamber Deposits , 1996 .

[22]  Bruce G. Bunting,et al.  Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap , 2006 .

[23]  John F. Watts,et al.  Book Review: Surface analysis of polymers by XPS and static SIMS , 1998 .

[24]  K. M. Adams,et al.  Effects of Combustion Chamber Deposit Location and Composition , 1981 .

[25]  P. J. Friel,et al.  Some properties of carbonaceous deposits accumulated in internal combustion engines , 1960 .

[26]  G. Kalghatgi,et al.  An Experimental Study of Combustion Chamber Deposits and Their Effects in a Spark-Ignition Engine , 1995 .

[27]  Ulrich Pfahl,et al.  Fuel Chemistry Impacts on Gasoline HCCI Combustion with Negative Valve Overlap and Direct Injection , 2007 .

[28]  W. Gille Characteristics of the SAS correlation function of long cylinders with oval right section , 2010 .

[29]  A. Alkidas,et al.  EFFECTS OF COMBUSTION-CHAMBER SURFACE TEMPERATURE ON THE EXHAUST EMISSIONS OF A SINGLE-CYLINDER SPARK-IGNITION ENGINE , 1978 .

[30]  L. B. Shore,et al.  COMBUSTION-CHAMBER DEPOSITS—A RADIOTRACER STUDY , 1958 .

[31]  L. B. Graiff Some New Aspects of Deposit Effects on Engine Octane Requirement Increase and Fuel Economy , 1979 .

[32]  T. Omata,et al.  Mechanism of Combustion Chamber Deposit Interference and Effects of Gasoline Additives on CCD Formation , 1995 .

[33]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[34]  John E. Dec,et al.  Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol , 2011 .

[35]  H. S. Homan,et al.  Fuel, Lubricant and Additive Effects on Combustion Chamber Deposits , 1998 .

[36]  Aristotelis Babajimopoulos,et al.  A comprehensive engine to drive-cycle modelling framework for the fuel economy assessment of advanced engine and combustion technologies , 2012 .

[37]  S. Sinha 6. Small-Angle Scattering from Porous Materials , 1999 .

[38]  L. B. Ebert Reductive Chemistry of Aromatic Hydrocarbon Molecules , 1985 .

[39]  D. Foster,et al.  Compression-Ignited Homogeneous Charge Combustion , 1983 .

[40]  Mark A. Hoffman Characterization of Combustion Chamber Deposits Formed During Homogeneous Charge Compression Ignition and the Impact of a Thermal Barrier Coating on Deposit Accumulation and HCCI Operability. , 2012 .

[41]  W. O. Siegl,et al.  On The Chemical Composition and Origin of Engine Deposits , 1985 .

[42]  John E. Dec,et al.  Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control , 2004 .

[43]  Yi Xu,et al.  The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Components Analysis , 2007 .

[44]  Yasunori Takei,et al.  STUDY ON COMBUSTION CHAMBER DEPOSIT FORMATION MECHANISM : INFLUENCE OF FUEL COMPONENTS AND GASOLINE DETERGENTS , 1997 .

[45]  Zoran Filipi,et al.  Characterizing the thermal sensitivity of a gasoline homogeneous charge compression ignition engine with measurements of instantaneous wall temperature and heat flux , 2005 .

[46]  L. B. Ebert Chemistry of Engine Combustion Deposits: Literature Review , 1985 .

[47]  J. T. Wentworth Effect of Combustion Chamber Surface Temperature on Exhaust Hydrocarbon Concentration , 1971 .

[48]  John E. Dec,et al.  Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline , 2011 .

[49]  S. Cheng A Micrographic Study of Deposit Formation Processes in a Combustion Chamber , 1996 .

[50]  Mohammad Haghgooie,et al.  Particulate Emissions from a Direct-Injection Spark-Ignition (DISI) Engine , 1999 .

[51]  Gen Shibata,et al.  Auto-Ignition Characteristics of Hydrocarbons and Development of HCCI Fuel Index , 2007 .

[52]  Toshio Yamada,et al.  Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System , 2011 .

[53]  John E. Dec,et al.  Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI Engines , 2009 .

[54]  William H. Green,et al.  Effects of Variations in Market Gasoline Properties on HCCI Load Limits , 2007 .

[55]  L. Reimer Transmission Electron Microscopy: Physics of Image Formation and Microanalysis , 1989 .

[56]  C. Sung,et al.  Homogeneous Charge Compression Ignition of Binary Fuel Blends , 2008 .

[57]  Eric Nafziger,et al.  Load Expansion of Stoichiometric HCCI Using Spark Assist and Hydraulic Valve Actuation , 2010 .

[58]  Carl L. Anderson,et al.  Gasification of Porous Combustion Chamber Deposits in a Spark Ignition Engine , 1993 .

[59]  R. Minetti,et al.  Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel , 2006 .

[60]  John E. Dec,et al.  Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost , 2010 .

[61]  R. C. Tupa,et al.  Gasoline and Diesel Fuel Additives for Performance/Distribution Quality - II , 1984 .

[62]  E. W. Beckman,et al.  THE EFFECT OF LEADED AND UNLEADED GASOLINES ON EXHAUST EMISSIONS AS INFLUENCED BY COMBUSTION CHAMBER DEPOSITS. (CRC PROJECT CAPE-3-68) , 1971 .

[63]  Gen Shibata,et al.  The Effect of Fuel Properties on Low and High Temperature Heat Release and Resulting Performance of an HCCI Engine , 2004 .

[64]  D. Djurado,et al.  Surface area and microporosity of carbon aerogels from gas adsorption and small- and wide-angle X-ray scattering measurements. , 2006, The journal of physical chemistry. B.

[65]  Kenneth Brezinsky The high-temperature oxidation of aromatic hydrocarbons , 1982 .

[66]  K. Corkwell,et al.  Honda Generators Used to Evaluate Fuels and Additive Effects on Combustion Chamber Deposits , 1994 .

[67]  J. D. Benson Some Factors Which Affect Octane Requirement Increase , 1975 .

[68]  S. Cheng A physical mechanism for deposit formation in a combustion chamber , 1994 .

[69]  Gautam Kalghatgi,et al.  Deposits in Gasoline Engines - A Literature Review , 1990 .

[70]  Gautam Kalghatgi,et al.  The Available and Required Autoignition Quality of Gasoline - Like Fuels in HCCI Engines at High Temperatures , 2004 .

[71]  Thomas A. Litzinger,et al.  The Effect of Fuel Composition and Engine Deposits on Emissions from a Spark Ignition Engine , 1993 .

[72]  P. Liiva,et al.  A Computational and Experimental Study of Combustion Chamber Deposit Effects on NOx Emissions , 1993 .

[73]  P. D. Wiczynski,et al.  Experimental results on the effect of piston surface roughness and porosity on diesel engine combustion , 1996 .

[74]  Shi-wai S. Cheng,et al.  Effect of Engine Operating Parameters on Engine Combustion Chamber Deposits , 1990 .

[75]  Orgun A. Guralp,et al.  Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements , 2009 .

[76]  J Yang,et al.  Expanding the operating range of homogeneous charge compression ignition-spark ignition dual-mode engines in the homogeneous charge compression ignition mode , 2005 .

[77]  Gautam Kalghatgi,et al.  Auto-Ignition Quality of Practical Fuels and Implications for Fuel Requirements of Future SI and HCCI Engines , 2005 .

[78]  N. Cernansky,et al.  The Oxidation of Propane at Low and Transition Temperatures , 1986 .

[79]  J. Duckworth Effects of Combustion-Chamber Deposits on Octane Requirement and Engine Power Output , 1951 .

[80]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[81]  C. Morley,et al.  A Laboratory Simulation and Mechanism for the Fuel Dependence of SI Combustion Chamber Deposit Formation , 1995 .

[82]  Vern D. Overbye,et al.  Unsteady Heat Transfer in Engines , 1961 .

[83]  G. Firmstone,et al.  Effects of Combustion Chamber Deposits on Tailpipe Emissions , 1994 .

[84]  D. I. Svergun,et al.  Structure Analysis by Small-Angle X-Ray and Neutron Scattering , 1987 .

[85]  T. W. Żerda,et al.  Effects of fuel additives on the microstructure of combustion engine deposits , 2001 .

[86]  Francisco Espinosa-Loza,et al.  Fuel and Additive Characterization for HCCI Combustion , 2003 .

[87]  Orgun A. Güralp The Effect of Combustion Chamber Deposits on Heat Transfer and Combustion in a Homogeneous Charge Compression Ignition Engine , 2008 .

[88]  Mohammad Haghgooie,et al.  Engine-Out Emissions from a Direct-Injection Spark-Ignition (DISI) Engine , 1999 .

[89]  Kenichi Nomura,et al.  Effect of Mirror-Finished Combustion Chamber on Heat Loss , 1990 .

[90]  G. T. Kalghatgi,et al.  Fuel Anti-Knock Quality- Part II. Vehicle Studies - How Relevant is Motor Octane Number (MON) in Modern Engines? , 2001 .

[91]  R. Price,et al.  PREDICTION OF COMBUSTION CHAMBER DEPOSIT GROWTH IN SI ENGINES , 1997 .

[92]  Hui Xie,et al.  Comparison of HCCI Combustion Respectively Fueled with Gasoline, Ethanol and Methanol through the Trapped Residual Gas Strategy , 2006 .

[93]  J. Edwards,et al.  Average Molecular Structure of Gasoline Engine Combustion Chamber Deposits Obtained by Solid-State 13 C, 31 P, and 1 H Nuclear Magnetic Resonance Spectroscopy , 1993 .

[94]  Donald L. Stivender,et al.  Development of a Fuel-Based Mass Emission Measurement Procedure , 1971 .

[95]  Hans-Erik Ångström,et al.  A Method of Defining Ignition Quality of Fuels in HCCI Engines , 2003 .

[96]  G. Woschni A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine , 1967 .

[97]  T. A. Huls,et al.  “Influence of Engine Variables on Exhaust Oxides of Nitrogen Concentrations from a Multi-Cylinder Engine” , 1967 .

[98]  A. J. Pahnke,et al.  Effect of Combustion Chamber Deposits and Driving Conditions on Vehicle Exhaust Emissions , 1969 .

[99]  Shi-wai Steve Cheng,et al.  The Impacts of Engine Operating Conditions and Fuel Compositions on the Formation of Combustion Chamber Deposits , 2000 .

[100]  Modelling the Effect of Engine Deposit on Octane Requirement , 1985 .

[101]  Gen Shibata,et al.  Correlation of Low Temperature Heat Release With Fuel Composition and HCCI Engine Combustion , 2005 .

[102]  Gautam Kalghatgi,et al.  Combustion Chamber Deposits in Spark-Ignition Engines: A Literature Review , 1995 .

[103]  M. D. Checkel,et al.  Extending the Load Range of a Natural Gas HCCI Engine using Direct Injected Pilot Charge and External EGR , 2009 .

[104]  John B. Heywood,et al.  Two-stage ignition in HCCI combustion and HCCI control by fuels and additives , 2003 .

[105]  Sean A. Bannon,et al.  Mechanism of Combustion Chamber Deposit Formation , 1994 .

[106]  P. D. Wiczynski,et al.  Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer , 1996 .

[107]  Y. Yonekawa,et al.  The Study on Combustion Chamber Deposit (Part 5) , 1982 .

[108]  John E. Dec,et al.  An Investigation of the Relationship Between Measured Intake Temperature, BDC Temperature, and Combustion Phasing for Premixed and DI HCCI Engines , 2004 .

[109]  Zoran Filipi,et al.  Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine , 2006 .

[110]  Stephen George Russ,et al.  Compression Ratio and Coolant Temperature Effects on HC Emissions from a Spark- Ignition Engine , 1995 .

[111]  Thomas A. Litzinger,et al.  An Experimental Study of Fuel Composition and Combustion Chamber Deposit Effects on Emissions from a Spark Ignition Engine , 1995 .

[112]  Nicholas P. Cernansky,et al.  Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments , 2005 .

[113]  M. Mastalerz,et al.  Application of SAXS and SANS in Evaluation of Porosity, Pore Size Distribution and Surface Area of Coal , 2004 .

[114]  Y. Yonekawa,et al.  The Effect of the Combustion Chamber Deposits on Octane Requirement Increase and Fuel Economy , 1985 .

[115]  Kazuie Nishiwaki,et al.  The Determination of Thermal Properties of Engine Combustion Chamber Deposits , 2000 .

[116]  T. W. Ryan,et al.  HCCI Fuels Evaluations-Gasoline Boiling Range Fuels , 2005 .

[117]  G. Kalghatgi,et al.  A Technique to Measure Thermal Diffusivity and Thickness of Combustion Chamber Deposits In-Situ , 1998 .

[118]  Stephen Ciatti,et al.  Sizes, graphitic structures and fractal geometry of light-duty diesel engine particulates , 2003 .

[119]  Raj Sekar,et al.  Exhaust Emissions of a Vehicle with a Gasoline Direct-Injection Engine , 1998 .

[120]  L. F. Dumont,et al.  Possible Mechanisms by which Combustion-Chamber Deposits Accumulate and Influence Knock , 1951 .

[121]  D. Pantea,et al.  Electrical conductivity of thermal carbon blacks: Influence of surface chemistry , 2001 .

[122]  M. Kraus Fundamental building blocks of nanoporous networks from ultra-small-angle x-ray scattering (USAXS) and small-angle x-ray scattering (SAXS) experiments , 2010 .

[123]  T. W. Żerda,et al.  Surface area, pore size distribution and microstructure of combustion engine deposits , 1999 .

[124]  Hanho Yun,et al.  Extending the High Load Operating Limit of a Naturally-Aspirated Gasoline HCCI Combustion Engine , 2010 .