q colourings of the triangular lattice

Nienhuis (1982,4) has shown that the critical O(n) model, on the honeycomb lattice is equivalent to a zero-temperature antiferromagnetic Potts model on the triangular lattice, i.e. to the chromatic polynomial of the triangular lattice. Here the critical O(n) model is solved by the Bethe ansatz method, thereby giving the large-lattice limit of the chromatic polynomial.

[1]  R. Baxter,et al.  Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .

[2]  J. Stephenson,et al.  Ising‐Model Spin Correlations on the Triangular Lattice , 1964 .

[3]  Bernard Nienhuis,et al.  Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions , 1982 .

[4]  Joseph Kahane,et al.  Is the four-color conjecture almost false? , 1979, J. Comb. Theory B.

[5]  Anthony J. Guttmann,et al.  On two-dimensional self-avoiding random walks , 1984 .

[6]  G. Wannier,et al.  Antiferromagnetism. The Triangular Ising Net , 1950 .

[7]  R. J. Baxter,et al.  Colorings of a Hexagonal Lattice , 1970 .

[8]  W. T. Tutte Chromatic sums for rooted planar triangulations: the cases $lambda =1$ and $lambda =2$ , 1973 .

[9]  R. Baxter,et al.  The inversion relation method for some two-dimensional exactly solved models in lattice statistics , 1982 .

[10]  R. Baxter,et al.  Triangular Potts model at its transition temperature, and related models , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  D. Kim,et al.  The limit of chromatic polynomials , 1979, J. Comb. Theory, Ser. B.

[12]  Elliott H. Lieb,et al.  Residual Entropy of Square Ice , 1967 .

[13]  S. Beraha,et al.  Limits of chromatic zeros of some families of maps , 1980, J. Comb. Theory B.

[14]  E. Domany,et al.  Nearest-neighbor Ising model with a uniaxial incommensurate phase and a Lifshitz point , 1983 .

[15]  Bernard Nienhuis,et al.  Critical behavior of two-dimensional spin models and charge asymmetry in the Coulomb gas , 1984 .

[16]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[17]  Henk W. J. Blöte,et al.  Triangular SOS models and cubic-crystal shapes , 1984 .