Multi-step perturbation solution of nonlinear differentiable equations applied to an econometric analysis of productivity
暂无分享,去创建一个
[1] H. B. Mann. Quadratic Forms with Linear Constraints , 1943 .
[2] Gene H. Golub,et al. Matrix computations , 1983 .
[3] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[4] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[5] R. Shibata. Asymptotically Efficient Selection of the Order of the Model for Estimating Parameters of a Linear Process , 1980 .
[6] K. Arrow,et al. Capital-labor substitution and economic efficiency , 1961 .
[7] Ian T. Jolliffe,et al. Projected gradient approach to the numerical solution of the SCoTLASS , 2006, Comput. Stat. Data Anal..
[8] Peter A. Zadrozny,et al. Higher-Moments in Perturbation Solution of the Linear-Quadratic Exponential Gaussian Optimal Control Problem , 2012 .
[9] Yrjö Vartia,et al. Efficient Methods of Measuring Welfare Change and Compensated Income in Terms of Ordinary Demand Functions , 1983 .
[10] Everette S. Gardner,et al. Exponential smoothing: The state of the art , 1985 .
[11] Martin Eichenbaum,et al. Capital Utilization and Returns to Scale , 1995, NBER Macroeconomics Annual.
[12] K. Sato. A Two-Level Constant-Elasticity-of-Substitution Production Function , 1967 .
[13] Francesco Audrino,et al. A dynamic model of expected bond returns: A functional gradient descent approach , 2006, Comput. Stat. Data Anal..
[14] R. Solow. TECHNICAL CHANGE AND THE AGGREGATE PRODUCTION FUNCTION , 1957 .
[15] T. Apostol. Mathematical Analysis , 1957 .