Autophagy in the presynaptic compartment in health and disease

Synapses are functionally distinct neuronal compartments that are critical for brain function, with synaptic dysfunction being an early pathological feature in aging and disease. Given the large number of proteins needed for synaptic function, the proliferation of defective proteins and the subsequent loss of protein homeostasis may be a leading cause of synaptic dysfunction. Autophagic mechanisms are cellular digestion processes that recycle cellular components and contribute to protein homeostasis. Autophagy is important within the nervous system, but its function in specific compartments such as the synapse has been unclear. Evidence from research on both autophagy and synaptic function suggests that there are links between the two and that synaptic homeostasis during aging requires autophagy to regulate protein homeostasis. Exciting new work on autophagy-modulating proteins that are enriched at the synapse has begun to link autophagy to synapses and synaptic dysfunction in disease. A better understanding of these links will help us harness the potential therapeutic benefits of autophagy in combating age-related disorders of the nervous system.

[1]  P. Verstreken,et al.  The SAC1 domain in synaptojanin is required for autophagosome maturation at presynaptic terminals , 2017, The EMBO journal.

[2]  C. Garner,et al.  Bassoon Controls Presynaptic Autophagy through Atg5 , 2017, Neuron.

[3]  Mark Ellisman,et al.  Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons , 2017, Neuron.

[4]  P. Verstreken,et al.  A LRRK2-Dependent EndophilinA Phosphoswitch Is Critical for Macroautophagy at Presynaptic Terminals , 2016, Neuron.

[5]  Maxime W. C. Rousseaux,et al.  Reduction of Nuak1 Decreases Tau and Reverses Phenotypes in a Tauopathy Mouse Model , 2016, Neuron.

[6]  Sandra Maday Mechanisms of neuronal homeostasis: Autophagy in the axon , 2016, Brain Research.

[7]  P. Verstreken,et al.  Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Autophagy and the Ubiquitin-Proteasome System , 2016, Cell reports.

[8]  M. Behari,et al.  Identification of a novel homozygous mutation Arg459Pro in SYNJ1 gene of an Indian family with autosomal recessive juvenile Parkinsonism. , 2016, Parkinsonism & related disorders.

[9]  Anatoli Ender,et al.  Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release , 2016, PLoS biology.

[10]  Kathleen F. Kerr,et al.  Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice , 2016, eLife.

[11]  Daniel A. Colón-Ramos,et al.  KIF1A/UNC-104 Transports ATG-9 to Regulate Neurodevelopment and Autophagy at Synapses. , 2016, Developmental cell.

[12]  D. Rubinsztein,et al.  Mammalian Autophagy: How Does It Work? , 2016, Annual review of biochemistry.

[13]  E. Holzbaur,et al.  Compartment-Specific Regulation of Autophagy in Primary Neurons , 2016, The Journal of Neuroscience.

[14]  Susan E. Brockerhoff,et al.  Arf6 and the 5'phosphatase of synaptojanin 1 regulate autophagy in cone photoreceptors , 2016, BioEssays : news and reviews in molecular, cellular and developmental biology.

[15]  Nicholas P. J. Day,et al.  Genomic epidemiology of artemisinin resistant malaria. , 2016, eLife.

[16]  P. Dayan,et al.  A mathematical model explains saturating axon guidance responses to molecular gradients , 2016, eLife.

[17]  A. Cuervo,et al.  Proteostasis and aging , 2015, Nature Network Boston.

[18]  P. Verstreken,et al.  Hsc70-4 Deforms Membranes to Promote Synaptic Protein Turnover by Endosomal Microautophagy , 2015, Neuron.

[19]  Beatriz Alvarez-Castelao,et al.  The Regulation of Synaptic Protein Turnover* , 2015, The Journal of Biological Chemistry.

[20]  S. Standring Gray's Anatomy: The Anatomical Basis of Clinical Practice , 2015 .

[21]  C. Garner,et al.  Presynaptic active zones in invertebrates and vertebrates , 2015, EMBO reports.

[22]  E. Wei,et al.  Autophagy in synaptic development, function, and pathology , 2015, Neuroscience Bulletin.

[23]  R. Morimoto,et al.  The biology of proteostasis in aging and disease. , 2015, Annual review of biochemistry.

[24]  Qian Cai,et al.  Axonal autophagosomes recruit dynein for retrograde transport through fusion with late endosomes , 2015, The Journal of cell biology.

[25]  Daniel Choquet,et al.  Control of Autophagosome Axonal Retrograde Flux by Presynaptic Activity Unveiled Using Botulinum Neurotoxin Type A , 2015, The Journal of Neuroscience.

[26]  L. Partridge,et al.  Promoting Health and Longevity through Diet: From Model Organisms to Humans , 2015, Cell.

[27]  R. Jahn,et al.  The GTPase Rab26 links synaptic vesicles to the autophagy pathway , 2015, eLife.

[28]  Amaia M. Arranz,et al.  LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism , 2015, Journal of Cell Science.

[29]  J. Debnath,et al.  Loss of Atg12, but not Atg5, in pro-opiomelanocortin neurons exacerbates diet-induced obesity , 2015, Autophagy.

[30]  P. De Camilli,et al.  Upregulation of Parkin in Endophilin Mutant Mice , 2014, The Journal of Neuroscience.

[31]  P. Verstreken,et al.  Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration , 2014, The Journal of cell biology.

[32]  Tobias Rose,et al.  Putting a finishing touch on GECIs , 2014, Front. Mol. Neurosci..

[33]  Bradley S. Peterson,et al.  Loss of mTOR-Dependent Macroautophagy Causes Autistic-like Synaptic Pruning Deficits , 2014, Neuron.

[34]  H. Kern,et al.  Autophagy Impairment in Muscle Induces Neuromuscular Junction Degeneration and Precocious Aging , 2014, Cell reports.

[35]  Michael I. Wilson,et al.  WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1 , 2014, Molecular cell.

[36]  E. Holzbaur,et al.  Autophagosome biogenesis in primary neurons follows an ordered and spatially regulated pathway. , 2014, Developmental cell.

[37]  Michael Krauss,et al.  Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins , 2014, Science.

[38]  S. Pappatà,et al.  PARK20 caused by SYNJ1 homozygous Arg258Gln mutation in a new Italian family , 2014, neurogenetics.

[39]  S. Rizzoli Synaptic vesicle recycling: steps and principles , 2014, The EMBO journal.

[40]  M. Mattson,et al.  Communication breakdown: The impact of ageing on synapse structure , 2014, Ageing Research Reviews.

[41]  Michael N. Hall,et al.  Making new contacts: the mTOR network in metabolism and signalling crosstalk , 2014, Nature Reviews Molecular Cell Biology.

[42]  W. Noble,et al.  A role for tau at the synapse in Alzheimer's disease pathogenesis , 2014, Neuropharmacology.

[43]  Y. Ohsumi Historical landmarks of autophagy research , 2013, Cell Research.

[44]  T. Südhof,et al.  A molecular machine for neurotransmitter release: synaptotagmin and beyond , 2013, Nature Medicine.

[45]  S. Pappatà,et al.  Mutation in the SYNJ1 Gene Associated with Autosomal Recessive, Early‐Onset Parkinsonism , 2013, Human mutation.

[46]  Vladimir Makarov,et al.  The Sac1 Domain of SYNJ1 Identified Mutated in a Family with Early‐Onset Progressive Parkinsonism with Generalized Seizures , 2013, Human mutation.

[47]  Annette Schenck,et al.  Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner , 2013, Nature Neuroscience.

[48]  R. Nixon,et al.  The role of autophagy in neurodegenerative disease , 2013, Nature Medicine.

[49]  Manuel Serrano,et al.  The Hallmarks of Aging , 2013, Cell.

[50]  Alcino J. Silva,et al.  mTOR regulates tau phosphorylation and degradation: implications for Alzheimer's disease and other tauopathies , 2013, Aging cell.

[51]  Karl Deisseroth,et al.  Recent advances in optogenetics and pharmacogenetics , 2013, Brain Research.

[52]  G. Juhász,et al.  Autophagosomal Syntaxin17-dependent lysosomal degradation maintains neuronal function in Drosophila , 2013, The Journal of cell biology.

[53]  L. Kappos,et al.  Rapamycin Attenuates the Progression of Tau Pathology in P301S Tau Transgenic Mice , 2013, PloS one.

[54]  M. Mattson,et al.  Sonic hedgehog promotes autophagy in hippocampal neurons , 2013, Biology Open.

[55]  G. D. Paolo,et al.  The Role of Lipids in the Control of Autophagy , 2013, Current Biology.

[56]  M. Blagosklonny Answering the ultimate question “What is the Proximal Cause of Aging?” , 2012, Aging.

[57]  P. Verstreken,et al.  LRRK2 Controls an EndoA Phosphorylation Cycle in Synaptic Endocytosis , 2012, Neuron.

[58]  T. Melia,et al.  Modulating macroautophagy: a neuronal perspective. , 2012, Future medicinal chemistry.

[59]  J. Hurley,et al.  Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. , 2012, Molecular cell.

[60]  A. Cuervo,et al.  Chaperone-mediated autophagy: a unique way to enter the lysosome world. , 2012, Trends in cell biology.

[61]  Mohammad Shehata,et al.  Neuronal Stimulation Induces Autophagy in Hippocampal Neurons That Is Involved in AMPA Receptor Degradation after Chemical Long-Term Depression , 2012, The Journal of Neuroscience.

[62]  M. L. Lachenmayer,et al.  Disrupted Autophagy Leads to Dopaminergic Axon and Dendrite Degeneration and Promotes Presynaptic Accumulation of α-Synuclein and LRRK2 in the Brain , 2012, The Journal of Neuroscience.

[63]  R. Faragher,et al.  Insights into CNS ageing from animal models of senescence , 2012, Nature Reviews Neuroscience.

[64]  R. Burke,et al.  Regulation of Presynaptic Neurotransmission by Macroautophagy , 2012, Neuron.

[65]  Sangeeta Khare,et al.  Guidelines for the use and interpretation of assays formonitoring autophagy (3rd edition) , 2016 .

[66]  Robert Clarke,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy , 2012 .

[67]  J. Morrison,et al.  The ageing cortical synapse: hallmarks and implications for cognitive decline , 2012, Nature Reviews Neuroscience.

[68]  A. Bartke,et al.  Rapamycin slows aging in mice , 2012, Cell cycle.

[69]  E. Holzbaur,et al.  Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons , 2012, The Journal of cell biology.

[70]  D. Rubinsztein,et al.  Control of autophagy as a therapy for neurodegenerative disease , 2012, Nature Reviews Neurology.

[71]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[72]  J. Sanes,et al.  Age-Related Alterations in Neurons of the Mouse Retina , 2011, The Journal of Neuroscience.

[73]  C. Crochemore,et al.  Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model , 2011, Journal of neurochemistry.

[74]  S. Russo,et al.  Structural and synaptic plasticity in stress-related disorders , 2011, Reviews in the neurosciences.

[75]  S. Sternson,et al.  Hunger States Switch a Flip-Flop Memory Circuit via a Synaptic AMPK-Dependent Positive Feedback Loop , 2011, Cell.

[76]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[77]  R. Shaw,et al.  The AMPK signalling pathway coordinates cell growth, autophagy and metabolism , 2011, Nature Cell Biology.

[78]  Gary J. Schwartz,et al.  Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. , 2011, Cell metabolism.

[79]  J. Auwerx,et al.  Calorie restriction: is AMPK a key sensor and effector? , 2011, Physiology.

[80]  M. Prescott,et al.  Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum , 2011, Autophagy.

[81]  P. Vandenabeele,et al.  Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain , 2011, Neurobiology of Disease.

[82]  Ralph A. Nixon,et al.  Autophagy failure in Alzheimer's disease—locating the primary defect , 2011, Neurobiology of Disease.

[83]  C. Chu,et al.  Synaptic dysfunction in genetic models of Parkinson's disease: A role for autophagy? , 2011, Neurobiology of Disease.

[84]  P. Verstreken,et al.  Loss of Skywalker Reveals Synaptic Endosomes as Sorting Stations for Synaptic Vesicle Proteins , 2011, Cell.

[85]  W. Wurst,et al.  LRRK2 Controls Synaptic Vesicle Storage and Mobilization within the Recycling Pool , 2011, The Journal of Neuroscience.

[86]  B. Viollet,et al.  AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 , 2011, Nature Cell Biology.

[87]  Youngmok C. Jang,et al.  Age-associated alterations of the neuromuscular junction , 2011, Experimental Gerontology.

[88]  B. Viollet,et al.  Phosphorylation of ULK1 (hATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy , 2011, Science.

[89]  Morgan Sheng,et al.  Deconstruction for Reconstruction: The Role of Proteolysis in Neural Plasticity and Disease , 2011, Neuron.

[90]  L. Santambrogio,et al.  Microautophagy of cytosolic proteins by late endosomes. , 2011, Developmental cell.

[91]  E. Klann,et al.  Dysregulation of the mTOR Pathway Mediates Impairment of Synaptic Plasticity in a Mouse Model of Alzheimer's Disease , 2010, PloS one.

[92]  Steven Finkbeiner,et al.  A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model , 2010, Proceedings of the National Academy of Sciences.

[93]  A. Cuervo,et al.  Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation , 2010, Neurobiology of Disease.

[94]  T. Noda,et al.  Regulation of membrane biogenesis in autophagy via PI3P dynamics. , 2010, Seminars in cell & developmental biology.

[95]  D. Klionsky,et al.  Eaten alive: a history of macroautophagy , 2010, Nature Cell Biology.

[96]  A. Kolesnikov,et al.  Age-Related Deterioration of Rod Vision in Mice , 2010, The Journal of Neuroscience.

[97]  W. Kiosses,et al.  Short-term fasting induces profound neuronal autophagy , 2010, Autophagy.

[98]  Hyuno Kang,et al.  Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise , 2010, Proceedings of the National Academy of Sciences.

[99]  R. Xavier,et al.  Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease , 2010, Proceedings of the National Academy of Sciences.

[100]  M. DiFiglia,et al.  The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington's disease , 2010, Molecular Neurodegeneration.

[101]  Di Chen,et al.  With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. , 2010, Cell metabolism.

[102]  Jayanta Debnath,et al.  Inhibition of mTOR by Rapamycin Abolishes Cognitive Deficits and Reduces Amyloid-β Levels in a Mouse Model of Alzheimer's Disease , 2010, PloS one.

[103]  E. Capetillo-Zarate,et al.  Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease , 2010, Acta Neuropathologica.

[104]  B. Yankner,et al.  Neural mechanisms of ageing and cognitive decline , 2010, Nature.

[105]  D. Glanzman,et al.  Common Mechanisms of Synaptic Plasticity in Vertebrates and Invertebrates , 2010, Current Biology.

[106]  L. Partridge,et al.  Mechanisms of Life Span Extension by Rapamycin in the Fruit Fly Drosophila melanogaster , 2010, Cell metabolism.

[107]  P. McPherson,et al.  SH3 domains from a subset of BAR proteins define a Ubl-binding domain and implicate parkin in synaptic ubiquitination. , 2009, Molecular cell.

[108]  Frank Sinner,et al.  Induction of autophagy by spermidine promotes longevity , 2009, Nature Cell Biology.

[109]  B. Ganetzky,et al.  Autophagy promotes synapse development in Drosophila , 2009, The Journal of cell biology.

[110]  E. Strettoi,et al.  Age-dependent remodelling of retinal circuitry , 2009, Neurobiology of Aging.

[111]  S. Knecht,et al.  Caloric restriction improves memory in elderly humans , 2009, Proceedings of the National Academy of Sciences.

[112]  Jessica E. Young,et al.  Nutrient Deprivation Induces Neuronal Autophagy and Implicates Reduced Insulin Signaling in Neuroprotective Autophagy Activation* , 2009, Journal of Biological Chemistry.

[113]  T. Tomoda,et al.  Unc-51 Controls Active Zone Density and Protein Composition by Downregulating ERK Signaling , 2009, The Journal of Neuroscience.

[114]  T. Fujimura,et al.  The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice. , 2008, Molecular biology of the cell.

[115]  J. Satsangi Faculty Opinions recommendation of Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. , 2008 .

[116]  R. Habets,et al.  Jcb: Article , 2022 .

[117]  Ralph A. Nixon,et al.  Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer's Disease , 2008, The Journal of Neuroscience.

[118]  B. Sakmann,et al.  High frequency action potential bursts (≥ 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex , 2008, The Journal of physiology.

[119]  Brian Spencer,et al.  The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. , 2008, The Journal of clinical investigation.

[120]  T. P. Neufeld,et al.  The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila , 2008, The Journal of cell biology.

[121]  M. Driscoll,et al.  A Role for Autophagy in the Extension of Lifespan by Dietary Restriction in C. elegans , 2008, PLoS genetics.

[122]  Sang Yoon Lee,et al.  The Dual Phosphatase Activity of Synaptojanin1 Is Required for Both Efficient Synaptic Vesicle Endocytosis and Reavailability at Nerve Terminals , 2007, Neuron.

[123]  Justin L. Vincent,et al.  Disruption of Large-Scale Brain Systems in Advanced Aging , 2007, Neuron.

[124]  T. Noda,et al.  Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3 , 2007, Autophagy.

[125]  L. Mucke,et al.  Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer's Disease Mouse Model , 2007, Science.

[126]  C. Reggiani,et al.  Neuromuscular junction in abdominal muscles of Drosophila melanogaster during adulthood and aging , 2007, The Journal of comparative neurology.

[127]  T. P. Neufeld,et al.  Direct Induction of Autophagy by Atg1 Inhibits Cell Growth and Induces Apoptotic Cell Death , 2007, Current Biology.

[128]  A. Donati The involvement of macroautophagy in aging and anti-aging interventions. , 2006, Molecular aspects of medicine.

[129]  R. Nixon,et al.  Neuronal macroautophagy: from development to degeneration. , 2006, Molecular aspects of medicine.

[130]  L. Chalupa,et al.  Dendrites of rod bipolar cells sprout in normal aging retina , 2006, Proceedings of the National Academy of Sciences.

[131]  David W. Miller,et al.  Kinase activity is required for the toxic effects of mutant LRRK2/dardarin , 2006, Neurobiology of Disease.

[132]  D. Hall,et al.  Presynaptic Terminals Independently Regulate Synaptic Clustering and Autophagy of GABAA Receptors in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[133]  Ralf Langen,et al.  Mechanism of endophilin N‐BAR domain‐mediated membrane curvature , 2006, The EMBO journal.

[134]  Masaaki Komatsu,et al.  Loss of autophagy in the central nervous system causes neurodegeneration in mice , 2006, Nature.

[135]  Hideyuki Okano,et al.  Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice , 2006, Nature.

[136]  D. Rubinsztein,et al.  Rapamycin alleviates toxicity of different aggregate-prone proteins. , 2006, Human molecular genetics.

[137]  C. Ross,et al.  Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[138]  Thomas C. Südhof,et al.  α-Synuclein Cooperates with CSPα in Preventing Neurodegeneration , 2005, Cell.

[139]  B. Hyman,et al.  Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function , 2005, Science.

[140]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[141]  Ralph A. Nixon,et al.  Extensive Involvement of Autophagy in Alzheimer Disease: An Immuno-Electron Microscopy Study , 2005, Journal of neuropathology and experimental neurology.

[142]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[143]  C. Ross,et al.  Protein aggregation and neurodegenerative disease , 2004, Nature Medicine.

[144]  Francesco Scaravilli,et al.  Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease , 2004, Nature Genetics.

[145]  R. K. McEwen,et al.  Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors , 2004, The EMBO journal.

[146]  M. Matsui,et al.  In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. , 2003, Molecular biology of the cell.

[147]  Sunil Q. Mehta,et al.  Synaptojanin Is Recruited by Endophilin to Promote Synaptic Vesicle Uncoating , 2003, Neuron.

[148]  Wei Song,et al.  Endophilin and Synaptojanin Hook Up to Promote Synaptic Vesicle Endocytosis , 2003, Neuron.

[149]  M. Mattson,et al.  Triple-Transgenic Model of Alzheimer's Disease with Plaques and Tangles Intracellular Aβ and Synaptic Dysfunction , 2003, Neuron.

[150]  M. Gonzalez-Gaitan,et al.  Role of Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter release , 2003, The Journal of cell biology.

[151]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[152]  I. Meinertzhagen,et al.  Endophilin Mutations Block Clathrin-Mediated Endocytosis but Not Neurotransmitter Release , 2002, Cell.

[153]  A. Gingras,et al.  A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[154]  P. De Camilli,et al.  Generation of high curvature membranes mediated by direct endophilin bilayer interactions , 2001, The Journal of cell biology.

[155]  D. McCormick,et al.  Essential Role of Phosphoinositide Metabolism in Synaptic Vesicle Recycling , 1999, Cell.

[156]  E. Kandel,et al.  A Transient, Neuron-Wide Form of CREB-Mediated Long-Term Facilitation Can Be Stabilized at Specific Synapses by Local Protein Synthesis , 1999, Cell.

[157]  J. York,et al.  SAC1-like Domains of Yeast SAC1,INP52, and INP53 and of Human Synaptojanin Encode Polyphosphoinositide Phosphatases* , 1999, The Journal of Biological Chemistry.

[158]  P. Hollenbeck Products of endocytosis and autophagy are retrieved from axons by regulated retrograde organelle transport , 1993, The Journal of cell biology.

[159]  A. Lees,et al.  Ageing and Parkinson's disease: substantia nigra regional selectivity. , 1991, Brain : a journal of neurology.

[160]  E. Holtzman,et al.  LYSOSOMES IN THE RAT SCIATIC NERVE FOLLOWING CRUSH , 1965, The Journal of cell biology.

[161]  Nektarios Tavernarakis,et al.  The Role of Autophagy in Aging , 2017 .

[162]  V. Bonifati Genetics of Parkinson's disease--state of the art, 2013. , 2014, Parkinsonism & related disorders.

[163]  M. Hansen,et al.  A Role for Autophagy in the Extension of Lifespan by Dietary Restriction in -1 , 2011 .

[164]  M. Demirci Comprehensive Clinical Nephrology 3rd Edition , 2011 .

[165]  T. Südhof,et al.  Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. , 2005, Cell.

[166]  T. Sudhof,et al.  The synaptic vesicle cycle. , 2004, Annual review of neuroscience.