Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller-Plesset perturbation theories.

We implement the minimax approximation for the decomposition of energy denominators in Laplace-transformed Moller-Plesset perturbation theories. The best approximation is defined by minimizing the Chebyshev norm of the quadrature error. The application to the Laplace-transformed second order perturbation theory clearly shows that the present method is much more accurate than other numerical quadratures. It is also shown that the error in the energy decays almost exponentially with respect to the number of quadrature points.

[1]  Martin Head-Gordon,et al.  Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method. , 2004, The Journal of chemical physics.

[2]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[3]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[4]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[5]  Christian Ochsenfeld,et al.  An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[6]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[9]  Péter R. Surján,et al.  The MP2 energy as a functional of the Hartree–Fock density matrix , 2005 .

[10]  Masato Kobayashi,et al.  Implementation of Surjan's density matrix formulae for calculating second-order Møller-Plesset energy , 2006 .

[11]  Christian Ochsenfeld,et al.  Rigorous integral screening for electron correlation methods. , 2005, The Journal of chemical physics.

[12]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[13]  Ingvar Lindgren,et al.  Atomic Many-Body Theory , 1982 .

[14]  Artur F Izmaylov,et al.  Resolution of the identity atomic orbital Laplace transformed second order Møller-Plesset theory for nonconducting periodic systems. , 2008, Physical chemistry chemical physics : PCCP.

[15]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[16]  Marco Häser,et al.  Møller-Plesset (MP2) perturbation theory for large molecules , 1993 .

[17]  Angela K. Wilson,et al.  Møller-Plesset correlation energies in a localized orbital basis using a Laplace transform technique , 1997 .

[18]  Dietrich Braess,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .

[19]  D. Braess Nonlinear Approximation Theory , 1986 .

[20]  Ericka Stricklin-Parker,et al.  Ann , 2005 .