Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization

Multiplicative noise (also known as speckle noise) models are central to the study of coherent imaging systems, such as synthetic aperture radar and sonar, and ultrasound and laser imaging. These models introduce two additional layers of difficulties with respect to the standard Gaussian additive noise scenario: (1) the noise is multiplied by (rather than added to) the original image; (2) the noise is not Gaussian, with Rayleigh and Gamma being commonly used densities. These two features of multiplicative noise models preclude the direct application of most state-of-the-art algorithms, which are designed for solving unconstrained optimization problems where the objective has two terms: a quadratic data term (log-likelihood), reflecting the additive and Gaussian nature of the noise, plus a convex (possibly nonsmooth) regularizer (e.g., a total variation or wavelet-based regularizer/prior). In this paper, we address these difficulties by: (1) converting the multiplicative model into an additive one by taking logarithms, as proposed by some other authors; (2) using variable splitting to obtain an equivalent constrained problem; and (3) dealing with this optimization problem using the augmented Lagrangian framework. A set of experiments shows that the proposed method, which we name MIDAL (multiplicative image denoising by augmented Lagrangian), yields state-of-the-art results both in terms of speed and denoising performance.

[1]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[2]  Jianing Shi,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..

[3]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[4]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[5]  J. Koko,et al.  An Augmented Lagrangian Method for , 2010 .

[6]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[8]  Stanley Osher,et al.  Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .

[9]  W. Marsden I and J , 2012 .

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[12]  Mohamed-Jalal Fadili,et al.  Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.

[13]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[14]  José M. Bioucas-Dias,et al.  An iterative algorithm for linear inverse problems with compound regularizers , 2008, 2008 15th IEEE International Conference on Image Processing.

[15]  M. Hestenes Multiplier and gradient methods , 1969 .

[16]  J. Goodman Some fundamental properties of speckle , 1976 .

[17]  Jean-Luc Starck,et al.  Stein Block Thresholding For Image Denoising , 2008, 0809.3486.

[18]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[19]  Mário A. T. Figueiredo,et al.  Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[20]  A. Iusem Augmented Lagrangian Methods and Proximal Point Methods for Convex Optimization , 1999 .

[21]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[22]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[23]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[24]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[25]  Michael K. Ng,et al.  A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..

[26]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[27]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[28]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[29]  Wotao Yin,et al.  Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .

[30]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[31]  J.M.B. Dias,et al.  Adaptive restoration of speckled SAR images , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[32]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[33]  G. Aubert,et al.  A VARIATIONAL APPROACH TO REMOVE MULTIPLICATIVE NOISE , 2006 .

[34]  Robert D. Nowak,et al.  On Total Variation Denoising: A New Majorization-Minimization Algorithm and an Experimental Comparisonwith Wavalet Denoising , 2006, 2006 International Conference on Image Processing.

[35]  Xue-Cheng Tai,et al.  Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.

[36]  Andy M. Yip,et al.  Recent Developments in Total Variation Image Restoration , 2004 .

[37]  Gaston H. Gonnet,et al.  On the LambertW function , 1996, Adv. Comput. Math..

[38]  José M. Bioucas-Dias,et al.  Total variation restoration of speckled images using a split-bregman algorithm , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[39]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Charles V. Jakowatz,et al.  Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .

[42]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[43]  OsherStanley,et al.  A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008 .

[44]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[45]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[46]  Simon Setzer,et al.  Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.

[47]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.