Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization
暂无分享,去创建一个
[1] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[2] Jianing Shi,et al. A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008, SIAM J. Imaging Sci..
[3] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[4] J.-C. Pesquet,et al. A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.
[5] J. Koko,et al. An Augmented Lagrangian Method for , 2010 .
[6] Victor S. Frost,et al. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7] Gilles Aubert,et al. A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..
[8] Stanley Osher,et al. Multiplicative Denoising and Deblurring: Theory and Algorithms , 2003 .
[9] W. Marsden. I and J , 2012 .
[10] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[11] A. Chambolle. Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.
[12] Mohamed-Jalal Fadili,et al. Multiplicative Noise Removal Using L1 Fidelity on Frame Coefficients , 2008, Journal of Mathematical Imaging and Vision.
[13] Gabriele Steidl,et al. Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..
[14] José M. Bioucas-Dias,et al. An iterative algorithm for linear inverse problems with compound regularizers , 2008, 2008 15th IEEE International Conference on Image Processing.
[15] M. Hestenes. Multiplier and gradient methods , 1969 .
[16] J. Goodman. Some fundamental properties of speckle , 1976 .
[17] Jean-Luc Starck,et al. Stein Block Thresholding For Image Denoising , 2008, 0809.3486.
[18] M. Nikolova. An Algorithm for Total Variation Minimization and Applications , 2004 .
[19] Mário A. T. Figueiredo,et al. Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.
[20] A. Iusem. Augmented Lagrangian Methods and Proximal Point Methods for Convex Optimization , 1999 .
[21] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[22] M. J. D. Powell,et al. A method for nonlinear constraints in minimization problems , 1969 .
[23] Tom Goldstein,et al. The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..
[24] Katta G. Murty,et al. Nonlinear Programming Theory and Algorithms , 2007, Technometrics.
[25] Michael K. Ng,et al. A New Total Variation Method for Multiplicative Noise Removal , 2009, SIAM J. Imaging Sci..
[26] Stephen J. Wright,et al. Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.
[27] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[28] Gabriele Steidl,et al. Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.
[29] Wotao Yin,et al. Bregman Iterative Algorithms for (cid:2) 1 -Minimization with Applications to Compressed Sensing ∗ , 2008 .
[30] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[31] J.M.B. Dias,et al. Adaptive restoration of speckled SAR images , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).
[32] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[33] G. Aubert,et al. A VARIATIONAL APPROACH TO REMOVE MULTIPLICATIVE NOISE , 2006 .
[34] Robert D. Nowak,et al. On Total Variation Denoising: A New Majorization-Minimization Algorithm and an Experimental Comparisonwith Wavalet Denoising , 2006, 2006 International Conference on Image Processing.
[35] Xue-Cheng Tai,et al. Augmented Lagrangian Method, Dual Methods and Split Bregman Iteration for ROF Model , 2009, SSVM.
[36] Andy M. Yip,et al. Recent Developments in Total Variation Image Restoration , 2004 .
[37] Gaston H. Gonnet,et al. On the LambertW function , 1996, Adv. Comput. Math..
[38] José M. Bioucas-Dias,et al. Total variation restoration of speckled images using a split-bregman algorithm , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).
[39] Ernie Esser,et al. Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .
[40] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[41] Charles V. Jakowatz,et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach , 1996 .
[42] Junfeng Yang,et al. A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..
[43] OsherStanley,et al. A Nonlinear Inverse Scale Space Method for a Convex Multiplicative Noise Model , 2008 .
[44] R. Glowinski,et al. Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .
[45] S. Quegan,et al. Understanding Synthetic Aperture Radar Images , 1998 .
[46] Simon Setzer,et al. Split Bregman Algorithm, Douglas-Rachford Splitting and Frame Shrinkage , 2009, SSVM.
[47] José M. Bioucas-Dias,et al. A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.